精英家教网 > 高中数学 > 题目详情
过椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左顶点A的斜率为k的直线交椭圆C于另一个点B,且点B在x轴上的射影恰好为右焦点F,若
1
3
<k<
1
2
,则椭圆离心率的取值范围是(  )
A.(
1
4
9
4
)
B.(
2
3
,1)
C.(
1
2
2
3
)
D.(0,
1
2
)
相关习题

科目:高中数学 来源: 题型:

精英家教网过椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左顶点A的斜率为k的直线交椭圆C于另一个点B,且点B在x轴上的射影恰好为右焦点F,若
1
3
<k<
1
2
,则椭圆离心率的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

过椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左顶点A的斜率为k的直线交椭圆C于另一个点B,且点B在x轴上的射影恰好为右焦点F,若
1
3
<k<
1
2
,则椭圆离心率的取值范围是(  )
A、(
1
4
9
4
)
B、(
2
3
,1)
C、(
1
2
2
3
)
D、(0,
1
2
)

查看答案和解析>>

科目:高中数学 来源: 题型:

过椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左顶点A且斜率为k的直线交椭圆C于另一点B,且点B在x轴上的射影恰为右焦点F,若k=
1
2
,则椭圆的离心率e的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦点分别为F1,F2,离心率为
2
2
,过点F1且垂直于x轴的直线被椭圆截得的弦长为
2
,直线l:y=kx+m与椭圆交于不同的A,B两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若在椭圆C上存在点Q满足:
OA
+
OB
OQ
(O为坐标原点).求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

过椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的一个焦点F且垂直于x轴的直线交椭圆于点(-1,
2
2
)

(1)求椭圆C的方程;
(2)椭圆C的左、右顶点A、B,左、右焦点分别为F1,F2,P为以F1F2为直径的圆上异于F1,F2的动点,问
AP
BP
是否为定值,若是求出定值,不是说明理由?
(3)是否存在过点Q(-2,0)的直线l与椭圆C交于两点M、N,使得|FD|=
1
2
|MN|
(其中D为弦MN的中点)?若存在,求出直线l的方程:若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点分别为F1(-1,0)、F2(1,0),O是坐标原点,C的右顶点和上顶点分别为A、B,且△AOB的面积为
5

(Ⅰ)求椭圆C的方程;
(Ⅱ)过点P(4,0)作与x轴不重合的直线l与C交于相异两点M、N,交y轴于Q点,证明
|PQ|
|PM|
+
|PQ|
|PN|
为定值,并求这个定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

过椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的一个焦点F且垂直于x轴的直线交椭圆于点(-1,
2
2
)

(1)求椭圆C的方程;
(2)椭圆C的左、右顶点A、B,左、右焦点分别为F1,F2,P为以F1F2为直径的圆上异于F1,F2的动点,问
AP
BP
是否为定值,若是求出定值,不是说明理由?
(3)是否存在过点Q(-2,0)的直线l与椭圆C交于两点M、N,使得|FD|=
1
2
|MN|
(其中D为弦MN的中点)?若存在,求出直线l的方程:若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点分别为F1、F2,上顶点为A,△AF1F2为正三角形,且以AF2为直径的圆与直线y=
3
x+2
相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)在(Ⅰ)的条件下,过右焦点F2作斜率为k的直线l与椭圆C交于M、N两点,在x轴上是否存在点P(m,0),使得以PM、PN为邻边的平行四边形是菱形?若存在,求实数m的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点分别为F1,F2,上顶点为A,过点A与AF2垂直的直线交x轴负半轴于点Q,且2
F1F2
+
F2Q
=
0

(1)求椭圆C的离心率;
(2)若过A、Q、F2三点的圆恰好与直线l:x-
3
y-3=0
相切,求椭圆C的方程;
(3)在(2)的条件下,过右焦点F2作斜率为k的直线l与椭圆C交于M、N两点,在x轴上是否存在点P(m,0)使得以PM,PN为邻边的平行四边形是菱形,如果存在,求出m的取值范围,如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点为F,过点F的直线与椭圆C相交于A,B两点,直线l的倾斜角为60°,
AF
=2
FB

(1)求椭圆C的离心率;
(2)如果|AB|=
15
4
,求椭圆C的方程.

查看答案和解析>>


同步练习册答案