精英家教网 > 高中数学 > 题目详情
椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点分别为F1(-1,0)、F2(1,0),O是坐标原点,C的右顶点和上顶点分别为A、B,且△AOB的面积为
5

(Ⅰ)求椭圆C的方程;
(Ⅱ)过点P(4,0)作与x轴不重合的直线l与C交于相异两点M、N,交y轴于Q点,证明
|PQ|
|PM|
+
|PQ|
|PN|
为定值,并求这个定值.
(Ⅰ)依题意得
a2-b2
=1
1
2
ab=
5
…(3分)
解得
a2=5
b2=4
,故椭圆C的方程为
x2
5
+
y2
4
=1
.…(5分)
(Ⅱ)证明:依题意可设直线l的方程为x=ky+4…(6分)
x=ky+4
4x2+5y2=20
,消去x可得(4k2+5)y2+32ky+44=0
设M(x1,y1),N(x2,y2),Q(0,y3),则
y1+y2=
-32k
4k2+5
y1y2=
44
4k2+5
…(8分)
又由直线l的方程x=ky+4知y3=-
4
k

由三角形的相似比得
|PQ|
|PM|
+
|PQ|
|PN|
=
|y3|
|y1|
+
|y3|
|y2|
=
|y3|(|y1|+|y2|)
|y1y2|

注意到y1y2>0,
∴|y1|+|y2|=|y1+y2|
|PQ|
|PM|
+
|PQ|
|PN|
=
|y3|×|y1+y2|
|y1y2|
=
4
|k|
×
32|k|
4k2+5
44
4k2+5
=
32
11

|PQ|
|PM|
+
|PQ|
|PN|
为定值
32
11
.…(12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,椭圆C:
x2
a2
+
y2
b2
=1
的顶点为A1,A2,B1,B2,焦点为F1,F2,,|A1B1|=
7
,S?A1B1A2B2=2S?B1F1B2F2
(Ⅰ)求椭圆C的方程;
(Ⅱ)设n是过原点的直线,l是与n垂直相交于P点、与椭圆相交于A,B两点的直线,且|
OP
|=1
,是否存在上述直线l使
AP
PB
=1成立?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若椭圆
x2
12
+
y2
8
=1
上有两点P、Q关于直线l:6x-6y-1=0对称,则PQ的中点M的坐标是(  )
A.(
1
3
1
6
)
B.(
1
2
1
3
)
C.(-
1
3
,-
1
2
)
D.(-
1
2
,-
1
3
)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,正方体ABCD-A1B1C1D1的棱长为1,点M 在棱AB上,且AM=
1
3
,点P是平面ABCD上的动点,且动点P到直线A1D1的距离与点P到点M 的距离的平方差为2,则动点P的轨迹是(  )
A.圆B.抛物线C.双曲线D.直线

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆
x2
4
+
y2
3
=1
,过椭圆的右焦点F的直线l与椭圆交于点A、B,定直线x=4交x轴于点K,直线KA和直线KB的斜率分别是k1、k2
(1)若直线l的倾斜角是45°,求线段AB的长;
(2)求证:k1+k2=0.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)经过点(
3
,-
3
2
)
,且椭圆的离心率e=
1
2
,过椭圆的右焦点F作两条互相垂直的直线,分别交椭圆于点A、B及C、D.
(Ⅰ)求椭圆的方程;
(Ⅱ)求证:
1
|AB|
+
1
|CD|
为定值;
(Ⅲ)求|AB|+
9
16
|CD|的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

矩形ABCD的中心在坐标原点,边AB与x轴平行,AB=8,BC=6.E,F,G,H分别是矩形四条边的中点,R,S,T是线段OF的四等分点,R′,S′,T′是线段CF的四等分点.设直线ER与GR′,ES与GS′,ET与GT′的交点依次为L,M,N.
(1)求以HF为长轴,以EG为短轴的椭圆Q的方程;
(2)根据条件可判定点L,M,N都在(1)中的椭圆Q上,请以点L为例,给出证明(即证明点L在椭圆Q上).
(3)设线段OF的n(n∈N+,n≥2)等分点从左向右依次为Ri(i=1,2,…,n-1),线段CF的n等分点从上向下依次为Ti(i=1,2,…,n-1),那么直线ERi(i=1,2,…,n-1)与哪条直线的交点一定在椭圆Q上?(写出结果即可,此问不要求证明)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0),左、右两个焦点分别为F1、F2,上顶点M(0,b),△MF1F2为正三角形且周长为6,直线l:x=my+4与椭圆C相交于A、B两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)求
OA
OB
的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知A(-3,0),B、C两点分别在y轴和x轴上运动,并且满足
AB
BQ
=0
BC
=
1
2
CQ

(1)求动点Q的轨迹方程;
(2)设过点A的直线与Q的轨迹交于E、F两点,A′(3,0),求直线A′E、A′F的斜率之和.

查看答案和解析>>

同步练习册答案