精英家教网 > 高中数学 > 题目详情
若函数f(x)=-x2+2x,则对任意实数x1,x2,下列不等式总成立的是(  )
A.f(
x1+x2
2
)≤
f(x1)+f(x2)
2
B.f(
x1+x2
2
)<
f(x1)+f(x2)
2
C.f(
x1+x2
2
)≥
f(x1)+f(x2)
2
D.f(
x1+x2
2
)>
f(x1)+f(x2)
2
相关习题

科目:高中数学 来源: 题型:

若函数f(x)=-x2+2x,则对任意实数x1,x2,下列不等式总成立的是(  )
A、f(
x1+x2
2
)≤
f(x1)+f(x2)
2
B、f(
x1+x2
2
)<
f(x1)+f(x2)
2
C、f(
x1+x2
2
)≥
f(x1)+f(x2)
2
D、f(
x1+x2
2
)>
f(x1)+f(x2)
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数f(x)=-x2+2x,则对任意实数x1,x2,下列不等式总成立的是(  )
A.f(
x1+x2
2
)≤
f(x1)+f(x2)
2
B.f(
x1+x2
2
)<
f(x1)+f(x2)
2
C.f(
x1+x2
2
)≥
f(x1)+f(x2)
2
D.f(
x1+x2
2
)>
f(x1)+f(x2)
2

查看答案和解析>>

科目:高中数学 来源:2009-2010学年安徽省合肥一中高一(上)第一次段考数学试卷(解析版) 题型:选择题

若函数f(x)=-x2+2x,则对任意实数x1,x2,下列不等式总成立的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)对于任意的两个不相等的实数x1,x2∈A都有0<
f(x1)-f(x2)
x1-x2
<1
成立,则称f(x)在区间A上为“0-1函数”.则下列函数在定义域上为“0-1函数”的有
 
(请填写相应的序号).
(1)y=sinx,x∈[-
π
2
π
2
]

(2)y=lnx,x>1;
(3)y=ex,x∈R;
(4)y=x2+2x+3,0<x<1.

查看答案和解析>>

科目:高中数学 来源:2010年上海市崇明县高考数学二模试卷(文科)(解析版) 题型:解答题

若函数f(x)=-tx2+2x+1(t<0,t为常数),对于任意两个不同的x1,x2,当x1,x2∈[-2,2]时,均有|f(x1)-f(x2)|≤k|x1-x2|(k为常数,k∈R)成立,则实数k的取值范围是   

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

若函数f(x)=-tx2+2x+1(t<0,t为常数),对于任意两个不同的x1,x2,当x1,x2∈[-2,2]时,均有|f(x1)-f(x2)|≤k|x1-x2|(k为常数,k∈R)成立,则实数k的取值范围是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
4x+k•2x+1
4x+2x+1
,若对于任意实数x1,x2,x3,均存在以f(x1),f(x2),f(x3)为三边边长的三角形,则实数k的取值范围是
-
1
2
≤k≤4
-
1
2
≤k≤4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•崇明县二模)若函数f(x)=-tx2+2x+1(t<0,t为常数),对于任意两个不同的x1,x2,当x1,x2∈[-2,2]时,均有|f(x1)-f(x2)|≤k|x1-x2|(k为常数,k∈R)成立,则实数k的取值范围是
[2-4t,+∞)
[2-4t,+∞)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年福建省福州三中高三(上)第二次月考数学试卷(理科)(解析版) 题型:填空题

给定区间D,对于函数f(x)与g(x)及任意x1,x2∈D(其中),若不等式f(x1)-f(x2)>g(x1)-g(x2)恒成立,则称函数f(x)相对于函数g(x)在区间D上是“渐先函数”.已知函数f(x)=ax2+ax相对于函数g(x)=2x-3在区间[a,a+2]上是渐先函数,则实数a的取值范围是   

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:对于任意x∈[0,1],函数f(x)≥0恒成立,且当x1≥0,x2≥0,x1+x2≤1时,总有f(x1+x2)≥f(x1)+f(x2)成立,则称f(x)为G函数.已知函数g(x)=x2与h(x)=a-2x-1是定义在[0,1]上的函数.
(1)试问函数g(x)是否为G函数?并说明理由;
(2)若函数h(x)是G函数,求实数a的值;
(3)在(2)的条件下,利用函数图象讨论方程g(2x)+h(-2x+1)=m(m∈R)解的个数情况.

查看答案和解析>>


同步练习册答案