精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2-x+x,将f(x)的图象向右平移3个单位,得到函数g(x)的图象,则g(x)的解析式是(  )
A.g(x)=2-x+3+x-3B.g(x)=2-x-3+x-3
C.g(x)=2-x+3+x+3D.g(x)=2-x-3+x+3
相关习题

科目:高中数学 来源:2008-2009学年广东省湛江一中高一(下)3月月考数学试卷(解析版) 题型:选择题

已知函数f(x)=2-x+x,将f(x)的图象向右平移3个单位,得到函数g(x)的图象,则g(x)的解析式是( )
A.g(x)=2-x+3+x-3
B.g(x)=2-x-3+x-3
C.g(x)=2-x+3+x+3
D.g(x)=2-x-3+x+3

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知函数f(x)=2-x+x,将f(x)的图象向右平移3个单位,得到函数g(x)的图象,则g(x)的解析式是


  1. A.
    g(x)=2-x+3+x-3
  2. B.
    g(x)=2-x-3+x-3
  3. C.
    g(x)=2-x+3+x+3
  4. D.
    g(x)=2-x-3+x+3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin2x+2cos2x-1,将f(x)的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,再将所得图象向右平移
π
4
个单位,得到函数y=g(x)的图象,则函数y=g(x)的解析式为
y=g(x)=
2
sinx.
y=g(x)=
2
sinx.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin2x+2cos2x-1,将f(x)的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,再将所得图象向右平移
π
4
个单位,得到函数y=g(x)的图象,则g(x)的解析式为(  )

查看答案和解析>>

科目:高中数学 来源:2010-2011学年辽宁省辽南协作体高二(下)期中数学试卷(文科)(解析版) 题型:选择题

已知函数f(x)=sin2x+2cos2x-1,将f(x)的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,再将所得图象向右平移个单位,得到函数y=g(x)的图象,则g(x)的解析式为( )
A.y=sin
B.y=cos
C.y=sin(4x-
D.y=cos4

查看答案和解析>>

科目:高中数学 来源:2013年山东省高考数学预测试卷(17)(解析版) 题型:选择题

已知函数f(x)=sin2x+2cos2x-1,将f(x)的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,再将所得图象向右平移个单位,得到函数y=g(x)的图象,则g(x)的解析式为( )
A.y=sin
B.y=cos
C.y=sin(4x-
D.y=cos4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知函数f(x)=sin2x+2cos2x-1,将f(x)的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,再将所得图象向右平移数学公式个单位,得到函数y=g(x)的图象,则函数y=g(x)的解析式为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sinxcosx+
3
(2cos2x-1).
(1)将函数f(x)化为Asin(ωx+φ)(ω>0,|φ|<
π
2
)的形式,填写下表,
精英家教网
并画出函数f(x)在区间[-
1
6
π,
5
6
π]上的图象;
(2)求函数f(x)的单调减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3x+k(k为常数),A(-2k,2)是函数y=f-1(x)图象上的点.
(1)求实数k的值及函数f-1(x)的解析式;
(2)将y=f-1(x)的图象按向量a=(3,0)平移,得到函数y=g(x)的图象,若2 f-1(x+
m
-3)-g(x)≥1恒成立,试求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin
x
3
cos
x
3
+cos2
x
3
-
3
2

(1)将f(x)写成f(x)=Asin(ωx+ψ)的形式,并求函数f(x)图象对称中心的横坐标;
(2)如果△ABC的三边a,b,c满足b2=ac,且边b所对的角为x,试求角x的范围及此时函数f(x)的最大值.

查看答案和解析>>


同步练习册答案