精英家教网 > 高中数学 > 题目详情
已知数列{an}满足:a1=a2-2a+2,an+1=an+2(n-a)+1,n∈N*,当且仅当n=3时,an最小,则实数a的取值范围为(  )
A.(-1,3)B.(
5
2
,3)
C.(
5
2
7
2
)
D.(2,4)
相关习题

科目:高中数学 来源:浙江模拟 题型:单选题

已知数列{an}满足:a1=a2-2a+2,an+1=an+2(n-a)+1,n∈N*,当且仅当n=3时,an最小,则实数a的取值范围为(  )
A.(-1,3)B.(
5
2
,3)
C.(
5
2
7
2
)
D.(2,4)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•浙江模拟)已知数列{an}满足:a1=a2-2a+2,an+1=an+2(n-a)+1,n∈N*,当且仅当n=3时,an最小,则实数a的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}为单调递增的等比数列,Sn为其前n项和,满足S4=a1+28,且a2,a3+2,a4仍构成等差数列.
(Ⅰ)求a2014
(Ⅱ)设数列{cn}的通项公式为cn=log 
1
2
an,bn=an•cn,Tn为数列{bn}的前n项和,现有真命题p:“Tn+n•2n+1
1
3
x3-
1
2
(2a+1)x2+(a2+a)x恒成立,a≥1.x∈[0,1]”,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f(x)=ax+数学公式+2-2a(a>0)在图象在点(1,f(1))处的切线与直线y=2x+1平行.
(1)求a,b满足的关系式;
(2)若f(x)≥2lnx在[1,+∞)上恒成立,求a的取值范围;
(3)若a=1,数列{an}满足a1=2,an+1=f(an)+2-an(n∈N*),求证:a1•a2•a3…an=n+1.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年重庆一中高三(上)11月月考数学试卷(文科)(解析版) 题型:解答题

已知f(x)=ax++2-2a(a>0)在图象在点(1,f(1))处的切线与直线y=2x+1平行.
(1)求a,b满足的关系式;
(2)若f(x)≥2lnx在[1,+∞)上恒成立,求a的取值范围;
(3)若a=1,数列{an}满足a1=2,an+1=f(an)+2-an(n∈N*),求证:a1•a2•a3…an=n+1.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年重庆一中高三(上)11月月考数学试卷(文科)(解析版) 题型:解答题

已知f(x)=ax++2-2a(a>0)在图象在点(1,f(1))处的切线与直线y=2x+1平行.
(1)求a,b满足的关系式;
(2)若f(x)≥2lnx在[1,+∞)上恒成立,求a的取值范围;
(3)若a=1,数列{an}满足a1=2,an+1=f(an)+2-an(n∈N*),求证:a1•a2•a3…an=n+1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=2,a2=3,其前n项和Sn满足Sn+1+Sn-1=2Sn+1(n≥2,n∈N*).
(1)求证:数列为等差数列,并求的通项公式;
(2)bn=2n•an,求数列{bn}的前n项和Tn
(3)cn=4n+(-1)n-1λ•2a(λ为非零整数,n∈N*),试确定λ的值,使得数列{cn}是递增数列.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江西省赣州市十二县(市)高一(下)期中数学试卷(解析版) 题型:解答题

已知数列{an}中,a1=2,a2=3,其前n项和Sn满足Sn+1+Sn-1=2Sn+1(n≥2,n∈N*).
(1)求证:数列为等差数列,并求的通项公式;
(2)bn=2n•an,求数列{bn}的前n项和Tn
(3)cn=4n+(-1)n-1λ•2a(λ为非零整数,n∈N*),试确定λ的值,使得数列{cn}是递增数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax+
bx
+2-2a(a>0)在图象在点(1,f(1))处的切线与直线y=2x+1平行.
(1)求a,b满足的关系式;
(2)若f(x)≥2lnx在[1,+∞)上恒成立,求a的取值范围;
(3)若a=1,数列{an}满足a1=2,an+1=f(an)+2-an(n∈N*),求证:a1•a2•a3…an=n+1.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)=ax+
b
x
+2-2a(a>0)在图象在点(1,f(1))处的切线与直线y=2x+1平行.
(1)求a,b满足的关系式;
(2)若f(x)≥2lnx在[1,+∞)上恒成立,求a的取值范围;
(3)若a=1,数列{an}满足a1=2,an+1=f(an)+2-an(n∈N*),求证:a1•a2•a3…an=n+1.

查看答案和解析>>


同步练习册答案