精英家教网 > 高中数学 > 题目详情
定义在R上的偶函数f(x)满足f(x+1)=-f(x),且在[-3,-2]上递减,α,β是锐角三角形的两个内角且α≠β,则下列不等式正确的是(  )
A.f(sinα)>f(cosβ)B.f(sinα)<f(cosβ)
C.f(sinα)>f(sinβ)D.f(cosα)>f(cosβ)
相关习题

科目:高中数学 来源: 题型:

9、定义在R上的偶函数f(x)满足f(x+1)=-f(x),且在[-1,0]上是增函数,给出下列关于f(x)的判断:
①f(x)是周期函数;
②f(x)关于直线x=1对称;
③f(x)在[0,1]上是增函数;
④f(x)在[1,2]上是减函数;
⑤f(2)=f(0),
其中正确的序号是
①②⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的偶函数f(x)满足f(x+1)=-f(x),且在[-1,0]上单调递增,a=f(3),b=f(
2
),c=f(2),则a,b,c大小关系是(  )
A、a>b>c
B、a>c>b
C、b>c>a
D、c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的偶函数f(x)满足f(x+1)=-f(x),且当x∈[-1,1]时,f(x)=x2
(1)求证:2是函数f(x)的一个周期;
(2)求f(x)在区间[2k-1,2k+1],k∈Z上的函数解析式;
(3)是否存在整数k,使
f(x)+2kx-9x
>0
对任意x∈[2k-1,2k+1]恒成立?若存在,请求出k的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的偶函数f(x)满足f(x+1)=-f(x),且当x∈[-1,0]时f(x)=(
1
2
)x
,则f(log28)等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的偶函数f (x)满足f(x+1)=f(1-x)若当0≤x<1时,f(x)=2x,则f(log26)=
3
2
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的偶函数f(x)满足f(x+1)=-f(x),且在[-3,-2]上是减函数,α,β是锐角三角形的两个角,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的偶函数f(x)满足f(x-1)是奇函数,则f(2009)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的偶函数f(x)满足f(x+1)=-f(x),且在[-1,0]上是增函数,给出下面关于f(x)的判断:
①f(x)是周期函数;  
②f(x)在[0,1]上是增函数;
③f(x)在[1,2]上是减函数;
④f(x)关于直线x=1对称.
其中正确判断的序号为
①④
①④
(写出所有正确判断的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的偶函数f(x)满足f(x+1)=-f(x),且在[-5,-4]上是减函数,若A、B是锐角三角形的两个内角,则(  )

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省绍兴一中高三(上)期中数学试卷(理科)(解析版) 题型:填空题

定义在R上的偶函数f (x)满足f(x+1)=f(1-x)若当0≤x<1时,f(x)=2x,则f(log26)=   

查看答案和解析>>


同步练习册答案