精英家教网 > 高中数学 > 题目详情
三角形的面积S=
1
2
(a+b+c)?r,a,b,c
为三角形的边长,r为三角形内切圆的半径,利用类比推理,可得出四面体的体积为(  )
A.V=
1
3
abc
B.V=
1
3
Sh
C.V=
1
3
(S1+S2+S3+S4)r
(S1,S2,S3,S4分别为四面体的四个面的面积,r为四面体内接球的半径)
D.V=
1
3
(ab+bc+ac)h,(h为四面体的高)
相关习题

科目:高中数学 来源: 题型:

三角形的面积为S=
1
2
(a+b+c)•r
,其中a,b,c为三角形的边长,r为三角形内切圆的半径,设S1、S2、S3、S4分别为四面体四个面的面积,r为四面体内切球的半径,利用类比推理可以得到四面体的体积为
V=
1
3
(S1+S2+S3+S4)r
V=
1
3
(S1+S2+S3+S4)r

查看答案和解析>>

科目:高中数学 来源: 题型:

三角形的面积为S=
1
2
(a+b+c)r
,a、b、c为三角形的边长,r为三角形内切圆的半径,利用类比推理可以得出四面体的体积为
V=
1
3
(S1+S2+S3+S4)r
V=
1
3
(S1+S2+S3+S4)r

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

三角形的面积为S=
1
2
(a+b+c)r
,a、b、c为三角形的边长,r为三角形内切圆的半径,利用类比推理可以得出四面体的体积为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

若三角形的三边长分别为a,b,c,内切圆半径为r,则此三角形的面积为S=
1
2
(a+b+c)
r.若四面体四个面的面积分别为S1,S2,S3,S4,内切球的半径为R,则此四面体类似的结论为
此四面体体积为V=
1
3
(S1+S2+S3+S4)R
此四面体体积为V=
1
3
(S1+S2+S3+S4)R

查看答案和解析>>

科目:高中数学 来源: 题型:

在三角形中有下面的性质:
(1)三角形的两边之和大于第三边;
(2)三角形的中位线等于第三边的一半;
(3)三角形的三条内角平分线交于一点,且这个点是三角形的内心;
(4)三角形的面积为S=
12
(a+b+c)r(r为三角形内切圆半径).
请类比出四面体的有关相似性质.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三角形的三边分别为a,b,c,内切圆的半径为r,则三角形的面积S=
1
2
(a+b+c)•r,四面体的四个面的面积分别为S1,S2,S3,S4,内切球的半径为R,类比三角形的面积可得四面体的体积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三角形的三边分别为a,b,c,内切圆的半径为r,则三角形的面积为s=
1
2
(a+b+c)r;四面体的四个面的面积分别为s1,s2,s3,s4,内切球的半径为R.类比三角形的面积可得四面体的体积为(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知三角形的三边分别为a,b,c,内切圆的半径为r,则三角形的面积为s=
1
2
(a+b+c)r;四面体的四个面的面积分别为s1,s2,s3,s4,内切球的半径为R.类比三角形的面积可得四面体的体积为(  )
A.?=
1
2
(s1+s2+s3+s4)R
B.?=
1
3
(s1+s2+s3+s4)R
C.?=
1
4
(s1+s2+s3+s4)R
D.?=(s1+s2+s3+s4)R

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面几何里,有:“若△ABC的三边长分别为a,b,c内切圆半径为r,则三角形面积为S△ABC=
12
(a+b+c)r”,拓展到空间,类比上述结论,“若四面体A-ACD的四个面的面积分别为S1,S2,S3,S4内切球的半径为r,则四面体的体积为
 

查看答案和解析>>

科目:高中数学 来源:吉安二模 题型:填空题

在平面几何里,有:“若△ABC的三边长分别为a,b,c内切圆半径为r,则三角形面积为S△ABC=
1
2
(a+b+c)r”,拓展到空间,类比上述结论,“若四面体A-ACD的四个面的面积分别为S1,S2,S3,S4内切球的半径为r,则四面体的体积为______.

查看答案和解析>>


同步练习册答案