精英家教网 > 高中数学 > 题目详情
已知f(x)在实数集上是减函数,若a+b≤0,则下列正确的是(  )
A.f(a)+f(b)≤-[f(a)+f(b)]B.f(a)+f(b)≤f(-a)+f(-b)
C.f(a)+f(b)≥f(-a)+f(-b)D.f(a)+f(b)≥-[f(a)+f(b)]
相关习题

科目:高中数学 来源: 题型:

已知f(x)在实数集上是减函数,若a+b≤0,则下列正确的是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知f(x)在实数集上是减函数,若a+b≤0,则下列正确的是(  )
A.f(a)+f(b)≤-[f(a)+f(b)]B.f(a)+f(b)≤f(-a)+f(-b)
C.f(a)+f(b)≥f(-a)+f(-b)D.f(a)+f(b)≥-[f(a)+f(b)]

查看答案和解析>>

科目:高中数学 来源:《1.3 函数的基本性质》2013年同步练习(解析版) 题型:选择题

已知f(x)在实数集上是减函数,若a+b≤0,则下列正确的是( )
A.f(a)+f(b)≤-[f(a)+f(b)]
B.f(a)+f(b)≤f(-a)+f(-b)
C.f(a)+f(b)≥f(-a)+f(-b)
D.f(a)+f(b)≥-[f(a)+f(b)]

查看答案和解析>>

科目:高中数学 来源:《函数的通性》2013年山东省淄博市高三数学复习(理科)(解析版) 题型:选择题

已知f(x)在实数集上是减函数,若a+b≤0,则下列正确的是( )
A.f(a)+f(b)≤-[f(a)+f(b)]
B.f(a)+f(b)≤f(-a)+f(-b)
C.f(a)+f(b)≥f(-a)+f(-b)
D.f(a)+f(b)≥-[f(a)+f(b)]

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知f(x)在实数集上是减函数,若a+b≤0,则下列正确的是


  1. A.
    f(a)+f(b)≤-[f(a)+f(b)]
  2. B.
    f(a)+f(b)≤f(-a)+f(-b)
  3. C.
    f(a)+f(b)≥f(-a)+f(-b)
  4. D.
    f(a)+f(b)≥-[f(a)+f(b)]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=mx+3,g(x)=x2+2x+m
(1)求证:函数f(x)-g(x)必有零点
(2)设函数G(x)=f(x)-g(x)-1
①若|G(x)|在[-1,0]上是减函数,求实数m的取值范围;
②是否存在整数a,b,使得a≤G(x)≤b的解集恰好是[a,b],若存在,求出a,b的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数集R上的函数f(x)=ax3+bx2+cx+d,其中a、b、c、d是实数.
(1)若函数f(x)在区间(-∞,-1)和(3,+∞)上都是增函数,在区间(-1,3)上是减函数,并且f(0)=-7,f′(0)=-18,求函数f(x)的表达式;
(2)若a、b、c满足b2<3ac,求证:函数f(x)是单调函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=mx+3,g(x)=x2+2x+m
(1)求证:函数f(x)-g(x)必有零点
(2)设函数G(x)=f(x)-g(x)-1
①若|G(x)|在[-1,0]上是减函数,求实数m的取值范围;
②是否存在整数a,b,使得a≤G(x)≤b的解集恰好是[a,b],若存在,求出a,b的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:南京三模 题型:解答题

已知函数f(x)=mx+3,g(x)=x2+2x+m
(1)求证:函数f(x)-g(x)必有零点
(2)设函数G(x)=f(x)-g(x)-1
①若|G(x)|在[-1,0]上是减函数,求实数m的取值范围;
②是否存在整数a,b,使得a≤G(x)≤b的解集恰好是[a,b],若存在,求出a,b的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2011年江西省抚州市临川一中高三第二次月考数学试卷(理科)(解析版) 题型:解答题

已知函数f(x)=mx+3,g(x)=x2+2x+m
(1)求证:函数f(x)-g(x)必有零点
(2)设函数G(x)=f(x)-g(x)-1
①若|G(x)|在[-1,0]上是减函数,求实数m的取值范围;
②是否存在整数a,b,使得a≤G(x)≤b的解集恰好是[a,b],若存在,求出a,b的值;若不存在,说明理由.

查看答案和解析>>


同步练习册答案