精英家教网 > 初中数学 > 题目详情
x+y=-6和xy=-7有相同的解,若求x和y的值,可将x、y看作某方程的两根,则该方程应是(  )
A.m2+6m+6m+7=0B.m2-6m-7=0
C.m2+6m-7=0D.m2-6m+7=0
相关习题

科目:初中数学 来源: 题型:

x+y=-6和xy=-7有相同的解,若求x和y的值,可将x、y看作某方程的两根,则该方程应是(  )

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

x+y=-6和xy=-7有相同的解,若求x和y的值,可将x、y看作某方程的两根,则该方程应是(  )
A.m2+6m+6m+7=0B.m2-6m-7=0
C.m2+6m-7=0D.m2-6m+7=0

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

x+y=-6和xy=-7有相同的解,若求x和y的值,可将x、y看作某方程的两根,则该方程应是


  1. A.
    m2+6m+6m+7=0
  2. B.
    m2-6m-7=0
  3. C.
    m2+6m-7=0
  4. D.
    m2-6m+7=0

查看答案和解析>>

科目:初中数学 来源: 题型:

31、问题1:同学们已经体会到灵活运用乘法公式给整式乘法及多项式的因式分解带来的方便,快捷.相信通过下面材料的学习、探究,会使你大开眼界,并获得成功的喜悦.
例:用简便方法计算195×205.
解:195×205
=(200-5)(200+5)①
=2002-52
=39975
(1)例题求解过程中,第②步变形是利用
平方差公式
(填乘法公式的名称);
(2)用简便方法计算:9×11×101×10001.
问题2:对于形如x2+2ax+a2这样的二次三项式,可以用公式法将它分解成(x+a)2的形式.但对于二次三项式x2+2ax-3a2,就不能直接运用公式了.此时,我们可以在二次三项式x2+2ax-3a2中先加上一项a2,使它与x2+2ax的和成为一个完全平方式,再减去a2,整个式子的值不变,于是有:
x2+2ax-3a2=(x2+2ax+a2)-a2-3a2
=(x+a)2-(2a)2
=(x+3a)(x-a).
像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.
(1)利用“配方法”分解因式:a2-4a-12.
问题3:若x-y=5,xy=3,求:①x2+y2;②x4+y4的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

问题1:同学们已经体会到灵活运用乘法公式给整式乘法及多项式的因式分解带来的方便,快捷.相信通过下面材料的学习、探究,会使你大开眼界,并获得成功的喜悦.
例:用简便方法计算195×205.
解:195×205
=(200-5)(200+5)①
=2002-52
=39975
(1)例题求解过程中,第②步变形是利用______(填乘法公式的名称);
(2)用简便方法计算:9×11×101×10001.
问题2:对于形如x2+2ax+a2这样的二次三项式,可以用公式法将它分解成(x+a)2的形式.但对于二次三项式x2+2ax-3a2,就不能直接运用公式了.此时,我们可以在二次三项式x2+2ax-3a2中先加上一项a2,使它与x2+2ax的和成为一个完全平方式,再减去a2,整个式子的值不变,于是有:
x2+2ax-3a2=(x2+2ax+a2)-a2-3a2
=(x+a)2-(2a)2
=(x+3a)(x-a).
像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.
(1)利用“配方法”分解因式:a2-4a-12.
问题3:若x-y=5,xy=3,求:①x2+y2;②x4+y4的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

问题1:同学们已经体会到灵活运用乘法公式给整式乘法及多项式的因式分解带来的方便,快捷.相信通过下面材料的学习、探究,会使你大开眼界,并获得成功的喜悦.
例:用简便方法计算195×205.
195×205
=(200-5)(200+5)①
=2002-52
=39975
(1)例题求解过程中,第②步变形是利用______(填乘法公式的名称);
(2)用简便方法计算:9×11×101×10001.
问题2:对于形如x2+2ax+a2这样的二次三项式,可以用公式法将它分解成(x+a)2的形式.但对于二次三项式x2+2ax-3a2,就不能直接运用公式了.此时,我们可以在二次三项式x2+2ax-3a2中先加上一项a2,使它与x2+2ax的和成为一个完全平方式,再减去a2,整个式子的值不变,于是有:
x2+2ax-3a2=(x2+2ax+a2)-a2-3a2
=(x+a)2-(2a)2
=(x+3a)(x-a).
像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.
(1)利用“配方法”分解因式:a2-4a-12.
问题3:若x-y=5,xy=3,求:①x2+y2;②x4+y4的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)兄弟二人分吃一碗饺子,每人吃饺子的个数如表:
精英家教网
①写出兄吃饺子数y与弟吃饺子数x之间的函数关系式(不要求写xy的取值范围).
②虽然当弟吃的饺子个数增多时,兄吃的饺子数(y)在减少,但y与x是成反例吗?
(2)水池中有水若干吨,若单开一个出水口,水流速v与全池水放光所用时t如表:
精英家教网
①写出放光池中水用时t(小时)与放水速度v(吨/小时)之间的函数关系.
②这是一个反比例函数吗?
③与(1)的结论相比,可见并非反比例函数有可能“函数值随自变量增大而减小”,反之,所有的反比例函数都是“函数值随自变量的增大而减小吗?这个问题,你可以提前探索、尝试,也可以预习下一课时”反比例函数的图象和性质,也可以等到下一节课我们共同解决.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

(1)兄弟二人分吃一碗饺子,每人吃饺子的个数如表:

①写出兄吃饺子数y与弟吃饺子数x之间的函数关系式(不要求写xy的取值范围).
②虽然当弟吃的饺子个数增多时,兄吃的饺子数(y)在减少,但y与x是成反例吗?
(2)水池中有水若干吨,若单开一个出水口,水流速v与全池水放光所用时t如表:

①写出放光池中水用时t(小时)与放水速度v(吨/小时)之间的函数关系.
②这是一个反比例函数吗?
③与(1)的结论相比,可见并非反比例函数有可能“函数值随自变量增大而减小”,反之,所有的反比例函数都是“函数值随自变量的增大而减小吗?这个问题,你可以提前探索、尝试,也可以预习下一课时”反比例函数的图象和性质,也可以等到下一节课我们共同解决.

查看答案和解析>>

科目:初中数学 来源:《5.1 反比例函数》2010年同步练习1(解析版) 题型:解答题

(1)兄弟二人分吃一碗饺子,每人吃饺子的个数如表:

①写出兄吃饺子数y与弟吃饺子数x之间的函数关系式(不要求写xy的取值范围).
②虽然当弟吃的饺子个数增多时,兄吃的饺子数(y)在减少,但y与x是成反例吗?
(2)水池中有水若干吨,若单开一个出水口,水流速v与全池水放光所用时t如表:

①写出放光池中水用时t(小时)与放水速度v(吨/小时)之间的函数关系.
②这是一个反比例函数吗?
③与(1)的结论相比,可见并非反比例函数有可能“函数值随自变量增大而减小”,反之,所有的反比例函数都是“函数值随自变量的增大而减小吗?这个问题,你可以提前探索、尝试,也可以预习下一课时”反比例函数的图象和性质,也可以等到下一节课我们共同解决.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(1)兄弟二人分吃一碗饺子,每人吃饺子的个数如表:

①写出兄吃饺子数y与弟吃饺子数x之间的函数关系式(不要求写xy的取值范围).
②虽然当弟吃的饺子个数增多时,兄吃的饺子数(y)在减少,但y与x是成反例吗?
(2)水池中有水若干吨,若单开一个出水口,水流速v与全池水放光所用时t如表:

①写出放光池中水用时t(小时)与放水速度v(吨/小时)之间的函数关系.
②这是一个反比例函数吗?
③与(1)的结论相比,可见并非反比例函数有可能“函数值随自变量增大而减小”,反之,所有的反比例函数都是“函数值随自变量的增大而减小吗?这个问题,你可以提前探索、尝试,也可以预习下一课时”反比例函数的图象和性质,也可以等到下一节课我们共同解决.

查看答案和解析>>


同步练习册答案