精英家教网 > 初中数学 > 题目详情
如果抛物线y=-x2+bx+c经过A(0,-2),B(-1,1)两点,那么此抛物线经过(  )
A.第一、二、三、四象限B.第一、二、三象限
C.第一、二、四象限D.第二、三、四象限
相关习题

科目:初中数学 来源: 题型:

已知:抛物线y=x2+bx+c的对称轴是x=2,且经过点A(1,0),且与x轴的另一个交点为B,与y轴交于点C,
(1)确定此二次函数的解析式及顶点D的坐标;
(2)将直线CD沿y轴向下平移3个单位长度,求平移后直线m的解析式.
(3)在直线m上是否存在一点E,使得以点E、A、B、C为顶点的四边形是梯形,如果存在,求出满足条件的E点的坐标,如果不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图(1),在平面直角坐标系中,矩形ABCO,B点坐标为(4,3),抛物线y=-数学公式x2+bx+c经过矩形ABCO的顶点B、C,D为BC的中点,直线AD与y轴交于E点,点F在直线AD上且横坐标为6.

(1)求该抛物线解析式并判断F点是否在该抛物线上;
(2)如图,动点P从点C出发,沿线段CB以每秒1个单位长度的速度向终点B运动;
同时,动点M从点A出发,沿线段AE以每秒数学公式个单位长度的速度向终点E运动.过点P作PH⊥OA,垂足为H,连接MP,MH.设点P的运动时间为t秒.
①问EP+PH+HF是否有最小值,如果有,求出t的值;如果没有,请说明理由.
②若△PMH是等腰三角形,求出此时t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:抛物线y=x2+bx+c的对称轴是x=2,且经过点A(1,0),且与x轴的另一个交点为B,与y轴交于点C,
(1)确定此二次函数的解析式及顶点D的坐标;
(2)将直线CD沿y轴向下平移3个单位长度,求平移后直线m的解析式.
(3)在直线m上是否存在一点E,使得以点E、A、B、C为顶点的四边形是梯形,如果存在,求出满足条件的E点的坐标,如果不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图(1),在平面直角坐标系中,矩形ABCOB点坐标为(4,3),抛物线yx2bxc经过矩形ABCO的顶点BCDBC的中点,直线ADy轴交于E点,与抛物线yx2bxc交于第四象限的F点.

(1)求该抛物线解析式与F点坐标;

(2)如图,动点P从点C出发,沿线段CB以每秒1个单位长度的速度向终点B运动;

同时,动点M从点A出发,沿线段AE以每秒个单位长度的速度向终点E运动.过

PPHOA,垂足为H,连接MPMH.设点P的运动时间为t秒.

①问EPPHHF是否有最小值,如果有,求出t的值;如果没有,请说明理由.

②若△PMH是等腰三角形,请直接写出此时t的值.

 

查看答案和解析>>

科目:初中数学 来源:2013年浙江省金华市六校联谊中考模拟数学试卷(带解析) 题型:解答题

如图(1),在平面直角坐标系中,矩形ABCOB点坐标为(4,3),抛物线yx2bxc经过矩形ABCO的顶点BCDBC的中点,直线ADy轴交于E点,与抛物线yx2bxc交于第四象限的F点.

(1)求该抛物线解析式与F点坐标;
(2)如图,动点P从点C出发,沿线段CB以每秒1个单位长度的速度向终点B运动;
同时,动点M从点A出发,沿线段AE以每秒个单位长度的速度向终点E运动.过
PPHOA,垂足为H,连接MPMH.设点P的运动时间为t秒.
①问EPPHHF是否有最小值,如果有,求出t的值;如果没有,请说明理由.
②若△PMH是等腰三角形,求出此时t的值.

查看答案和解析>>

科目:初中数学 来源:2013年浙江省金华市六校联谊中考数学模拟试卷(解析版) 题型:解答题

如图(1),在平面直角坐标系中,矩形ABCO,B点坐标为(4,3),抛物线y=x2+bx+c经过矩形ABCO的顶点B、C,D为BC的中点,直线AD与y轴交于E点,与抛物线y=x2+bx+c交于第四象限的F点.
(1)求该抛物线解析式与F点坐标;
(2)如图(2),动点P从点C出发,沿线段CB以每秒1个单位长度的速度向终点B运动;同时,动点M从点A出发,沿线段AE以每秒个单位长度的速度向终点E运动.过点P作PH⊥OA,垂足为H,连接MP,MH.设点P的运动时间为t秒.
①问EP+PH+HF是否有最小值?如果有,求出t的值;如果没有,请说明理由.
②若△PMH是等腰三角形,请直接写出此时t的值.

查看答案和解析>>

科目:初中数学 来源:2013年江苏省盐城中学中考数学模拟试卷(5月份)(解析版) 题型:解答题

如图(1),在平面直角坐标系中,矩形ABCO,B点坐标为(4,3),抛物线y=-x2+bx+c经过矩形ABCO的顶点B、C,D为BC的中点,直线AD与y轴交于E点,点F在直线AD上且横坐标为6.

(1)求该抛物线解析式并判断F点是否在该抛物线上;
(2)如图,动点P从点C出发,沿线段CB以每秒1个单位长度的速度向终点B运动;
同时,动点M从点A出发,沿线段AE以每秒个单位长度的速度向终点E运动.过点P作PH⊥OA,垂足为H,连接MP,MH.设点P的运动时间为t秒.
①问EP+PH+HF是否有最小值,如果有,求出t的值;如果没有,请说明理由.
②若△PMH是等腰三角形,求出此时t的值.

查看答案和解析>>

科目:初中数学 来源:2013年湖北省黄冈市中考数学模拟试卷(十五)(解析版) 题型:解答题

如图(1),在平面直角坐标系中,矩形ABCO,B点坐标为(4,3),抛物线y=x2+bx+c经过矩形ABCO的顶点B、C,D为BC的中点,直线AD与y轴交于E点,与抛物线y=x2+bx+c交于第四象限的F点.
(1)求该抛物线解析式与F点坐标;
(2)如图(2),动点P从点C出发,沿线段CB以每秒1个单位长度的速度向终点B运动;同时,动点M从点A出发,沿线段AE以每秒个单位长度的速度向终点E运动.过点P作PH⊥OA,垂足为H,连接MP,MH.设点P的运动时间为t秒.
①问EP+PH+HF是否有最小值?如果有,求出t的值;如果没有,请说明理由.
②若△PMH是等腰三角形,请直接写出此时t的值.

查看答案和解析>>

科目:初中数学 来源:2013年湖北省黄冈市中考数学模拟试卷(八)(解析版) 题型:解答题

如图(1),在平面直角坐标系中,矩形ABCO,B点坐标为(4,3),抛物线y=x2+bx+c经过矩形ABCO的顶点B、C,D为BC的中点,直线AD与y轴交于E点,与抛物线y=x2+bx+c交于第四象限的F点.
(1)求该抛物线解析式与F点坐标;
(2)如图(2),动点P从点C出发,沿线段CB以每秒1个单位长度的速度向终点B运动;同时,动点M从点A出发,沿线段AE以每秒个单位长度的速度向终点E运动.过点P作PH⊥OA,垂足为H,连接MP,MH.设点P的运动时间为t秒.
①问EP+PH+HF是否有最小值?如果有,求出t的值;如果没有,请说明理由.
②若△PMH是等腰三角形,请直接写出此时t的值.

查看答案和解析>>

科目:初中数学 来源:2008年北京市延庆县中考数学二模试卷(解析版) 题型:解答题

已知:抛物线y=x2+bx+c的对称轴是x=2,且经过点A(1,0),且与x轴的另一个交点为B,与y轴交于点C,
(1)确定此二次函数的解析式及顶点D的坐标;
(2)将直线CD沿y轴向下平移3个单位长度,求平移后直线m的解析式.
(3)在直线m上是否存在一点E,使得以点E、A、B、C为顶点的四边形是梯形,如果存在,求出满足条件的E点的坐标,如果不存在,说明理由.

查看答案和解析>>


同步练习册答案