精英家教网 > 初中数学 > 题目详情
一个多边形的边长分别为2、3、4、5、6,另一个和它相似的多边形的最短边长为6,则这个多边形的最长边是(  )
A.12B.18C.24D.30
相关习题

科目:初中数学 来源: 题型:

一个多边形的边长分别为2、3、4、5、6,另一个和它相似的多边形的最短边长为6,则这个多边形的最长边是(  )
A、12B、18C、24D、30

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

一个多边形的边长分别为2、3、4、5、6,另一个和它相似的多边形的最短边长为6,则这个多边形的最长边是(  )
A.12B.18C.24D.30

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

一个多边形的边长分别为2、3、4、5、6,另一个和它相似的多边形的最短边长为6,则这个多边形的最长边是


  1. A.
    12
  2. B.
    18
  3. C.
    24
  4. D.
    30

查看答案和解析>>

科目:初中数学 来源:数学教研室 题型:022

一个多边形的边长分别为23456,和它相似的另一个多边形最长的边是18

则较大多边形的周长是________。

 

查看答案和解析>>

科目:初中数学 来源: 题型:

有一个多边形的边长分别是4cm、5cm、6cm、4cm、5cm,和它相似的一个多边形最长边为8cm,那么这个多边形的周长是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

有一个多边形的边长分别是4cm、5cm、6cm、4cm、5cm,和它相似的一个多边形最长边为8cm,那么这个多边形的周长是


  1. A.
    12cm
  2. B.
    18cm
  3. C.
    32cm
  4. D.
    48cm

查看答案和解析>>

科目:初中数学 来源: 题型:

6、有一个多边形的各边长分别为4cm,5cm,6cm,4cm,5cm,和它相似的另一个多边形的最长边为9cm,则这个多边形的周长是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

图1是边长分别为4
3
和3的两个等边三角形纸片ABC和C′D′E′叠放在一起(C与C′重合).
(1)操作:固定△ABC,将△C′D′E′绕点C顺时针旋转30°得到△CDE,连接AD、BE,CE的延长线交AB于F(图2);
探究:在图2中,线段BE与AD之间有怎样的大小关系?试证明你的结论.
(2)操作:将图2中的△CDE,在线段CF上沿着CF方向以每秒1个单位的速度平移,平移后的△CDE设为△PQR(图3);
请问:经过多少时间,△PQR与△ABC重叠部分的面积恰好等于
7
3
4

(3)操作:图1中△C′D′E′固定,将△ABC移动,使顶点C落在C′E′的中点,边BC交D′E′于点M,边AC交D′C′于点N,设
∠AC C′=α(30°<α<90,图4);
探究:在图4中,线段C′N•E′M的值是否随α的变化而变化?如果没有变化,请你求出C′N•E′M的值,如果有变化,请你说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

图1是边长分别为4数学公式和3的两个等边三角形纸片ABC和C′D′E′叠放在一起(C与C′重合).
(1)操作:固定△ABC,将△C′D′E′绕点C顺时针旋转30°得到△CDE,连接AD、BE,CE的延长线交AB于F(图2);
探究:在图2中,线段BE与AD之间有怎样的大小关系?试证明你的结论.
(2)操作:将图2中的△CDE,在线段CF上沿着CF方向以每秒1个单位的速度平移,平移后的△CDE设为△PQR(图3);
请问:经过多少时间,△PQR与△ABC重叠部分的面积恰好等于数学公式
(3)操作:图1中△C′D′E′固定,将△ABC移动,使顶点C落在C′E′的中点,边BC交D′E′于点M,边AC交D′C′于点N,设
∠AC C′=α(30°<α<90,图4);
探究:在图4中,线段C′N•E′M的值是否随α的变化而变化?如果没有变化,请你求出C′N•E′M的值,如果有变化,请你说明理由.

查看答案和解析>>

科目:初中数学 来源:重庆市期末题 题型:解答题

图1是边长分别为4和3的两个等边三角形纸片ABC和C'D'E'叠放在一起(C与C'重合)。
(1)操作:固定△ABC,将△C'D'E'绕点C顺时针旋转30°得到△CDE,连结AD、BE,CE的延长线交AB于F(图2);
探究:在图2中,线段BE与AD之间有怎样的大小关系?试证明你的结论。
(2)操作:将图2中的△CDE,在线段CF上沿着CF方向以每秒1个单位的速度平移,平移后的△CDE设为△PQR(图3);
请问:经过多少时间,△PQR与△ABC重叠部分的面积恰好等于
(3)操作:图1中△C'D'E'固定,将△ABC移动,使顶点C落在C'E'的中点,边BC交D'E'于点M,边AC交D'C'于点N,设∠ACC'=α(30°<α<90,图4);
探究:在图4中,线段C'N·E'M的值是否随α的变化而变化?如果没有变化,请你求出C'N·E'M的值,如果有变化,请你说明理由。

查看答案和解析>>


同步练习册答案