精英家教网 > 初中数学 > 题目详情
若点A(0,2),点B(-3,2),那么点A、B所在的直线是(  )
A.直线y=2B.直线x=2C.直线x=-3D.直线y=-3
相关习题

科目:初中数学 来源:同步题 题型:填空题

若点O是ABCD对角线AC的中点,EF⊥AC于O,交AD、BC于E、F,那么线段DE关于点O的对称线段是(    )。

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)如图1,已知△ABC中,∠BAC=45°,AB=AC,AD⊥BC于D,将△ABC沿AD剪开,并分别以AB、AC为轴翻转,点E、F分别是点D的对应点,得到△ABE和△ACF (与△ABC在同一平面内).延长EB、FC相交于G点,证明四边形AEGF是正方形;
(2)如果(1)中AB≠AC,其他不变,如图2.那么四边形AEGF是否是正方形?请说明理由;
(3)在(2)中,若BD=2,DC=3,求AD的长.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)如图所示,BD,CE分别是△ABC的外角平分线,过点A作AF⊥BD,AG⊥CE,垂足分别为F,G,连接FG,延长AF,AG,与直线BC分别交于点M、N,那么线段FG与△ABC的周长之间存在的数量关系是什么?
即:FG=
 
(AB+BC+AC)
(直接写出结果即可)
精英家教网
(2)如图,若BD,CE分别是△ABC的内角平分线;其他条件不变,线段FG与△ABC三边之间又有怎样的数量关系?请写出你的猜想,并给予证明.
精英家教网
(3)如图,若BD为△ABC的内角平分线,CE为△ABC的外角平分线,其他条件不变,线段FG与△ABC三边又有怎样的数量关系?直接写出你的猜想即可.不需要证明.答:线段FG与△ABC三边之间数量关系是
 

精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

1、若A(a,b),B(b,a)表示同一点,那么这一点在(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

9、若P(m,n)与Q(n,m)表示同一个点,那么这个点一定在(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)如图1,若D、E分别是△ABC的边AB、AC上的中点,我们把这样的线段DE称为是三角形的中位线.你知道中位线DE与BC之间有什么关系吗?请同学们大胆地猜想一下,并证明你的结论.
(2)如示意图2,小华家(点A处)和公路(l)之间竖立着一块35m长且平行于公路的巨型广告牌(DE).广告牌挡住了小华的视线,请在图中画出视点A的盲区,并将盲区内的那段公路计为BC.一辆以60km/h匀速行驶的汽车经过公路段的时间是3s,已知广告牌和公路的距离是40m,求小华家到公路的距离(精确到1m).

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)如图,在数轴上有一小木棒AB,若平移木棒,使B落在A处,则A′所表示的数为-1,若将A落在B处时,则B′所表示的数14,它的两个端点A、B所表示的数分别是
4
4
9
9

(2)老师给东东出了一道关于年龄的数学题:我像你那么小时,你才两岁;你像我那么大时,我已经44岁了,你猜我有多少岁?亲爱的同学,你能不能利用上一题的方法帮助小东求出老师的年龄呢?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

(1)如图1,若D、E分别是△ABC的边AB、AC上的中点,我们把这样的线段DE称为是三角形的中位线.你知道中位线DE与BC之间有什么关系吗?请同学们大胆地猜想一下,并证明你的结论.
(2)如示意图2,小华家(点A处)和公路(l)之间竖立着一块35m长且平行于公路的巨型广告牌(DE).广告牌挡住了小华的视线,请在图中画出视点A的盲区,并将盲区内的那段公路计为BC.一辆以60km/h匀速行驶的汽车经过公路段的时间是3s,已知广告牌和公路的距离是40m,求小华家到公路的距离(精确到1m).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

(1)A、B两村之间的公路进行对接修筑,甲工程队从A村向B村方向修筑,乙工程队从B村向A村方向修筑.已知甲工程队先施工3天,乙工程队再开始施工.乙工程队施工几天后因另有任务提前离开,余下的任务由甲工程队单独完成,直到公路修通.如图1甲乙两个工程队修公路的长度y(米)与施工时间x(天)之间的函数图象,请根据图象所提供的信息解答下列问题:
①乙工程队每天修公路多少米?
②分别求甲、乙工程队修公路的长度y(米)与施工时间x(天)之间的函数关系式;
③若乙工程队后来进入施工后,不提前离开,直到公路对接完工,那么施工过程共需几天?
(2)如图2直线数学公式分别与x轴、y轴交于点A、B,在第一象限取点C,使△ABC成为等腰直角三角形;如果在第二象限内有一点P(a,数学公式),使△ABP的面积与Rt△ABC的面积相等,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

(1)如图1,已知△ABC中,∠BAC=45°,AB=AC,AD⊥BC于D,将△ABC沿AD剪开,并分别以AB、AC为轴翻转,点E、F分别是点D的对应点,得到△ABE和△ACF (与△ABC在同一平面内).延长EB、FC相交于G点,证明四边形AEGF是正方形;
(2)如果(1)中AB≠AC,其他不变,如图2.那么四边形AEGF是否是正方形?请说明理由;
(3)在(2)中,若BD=2,DC=3,求AD的长.

查看答案和解析>>


同步练习册答案