精英家教网 > 初中数学 > 题目详情
已知a、b、c为ABC的三边,且关于x的一元二次方程(c-b)x2+2(b-a)x+(a-b)=0有两个相等的实根,则这个三角形是(  )
A.等边三角形B.直角三角形
C.等腰三角形D.不等边三角形
相关习题

科目:初中数学 来源: 题型:

已知:如图,在平面直角坐标系中,△ABC为等腰三角形,直线AC解析式为y=-2x+6,精英家教网将△AOC沿直线AC折叠,点O落在平面内的点E处,直线AE交x轴于点D.
(1)求直线AD解析式;
(2)动点P以每秒1个单位的速度,从点B出发沿着x轴正方向匀速运动,点Q是射线CE上的点,且∠PAQ=∠BAC,设P运动时间为t秒,求△POQ的面积S与t之间的函数关系式;
(3)在(2)的条件下,直线CE上是否存在一点F,使以点F、A、D、P为顶点的四边形是平行四边形?若存在,求出t值及Q点坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知△ABC的三边a、b、c的值都是正数,且a=b-1、c=b+1,又已知关于x的方程x2-5x+
14
b+3=0的一个根恰好为b的值,求cosA的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC为等边三角形,AB=4
3
,AH⊥BC,垂足为点H,点D在线段HC上,且HD=2,点P为射线AH上任意一点,以点P为圆心,线段PD的长为半径作⊙P,设AP=x.精英家教网
(1)当x=3时,求⊙P的半径长;
(2)如图1,如果⊙P与线段AB相交于E、F两点,且EF=y,求y关于x的函数解析式,并写出它的定义域;
(3)如果△PHD与△ABH相似,求x的值(直接写出答案即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:△ABC的两边AB、AC的长是关于x的一元二次方程x2-(2k+3)x+p=0的两个实数根且p,k的函数关系如图所示,第三边BC的长为5.
(1)求出以k为自变量的p的函数关系式.
(2)k为何值时,△ABC是以BC为斜边的直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,在平面直角坐标系中,△ABC为等腰三角形,直线AC解析式为y=-2x+6,将△AOC沿直线AC折叠,点O落在平面内的点E处,直线AE交x轴于点D.
(1)求直线AD解析式;
(2)动点P以每秒1个单位的速度,从点B出发沿着x轴正方向匀速运动,点Q是射线CE上的点,且∠PAQ=∠BAC,设P运动时间为t秒,求△POQ的面积S与t之间的函数关系式;
(3)在(2)的条件下,直线CE上是否存在一点F,使以点F、A、D、P为顶点的四边形是平行四边形?若存在,求出t值及Q点坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:2010年中考模拟考试数学试卷(解析版) 题型:解答题

已知:如图,在平面直角坐标系中,△ABC为等腰三角形,直线AC解析式为y=-2x+6,将△AOC沿直线AC折叠,点O落在平面内的点E处,直线AE交x轴于点D.
(1)求直线AD解析式;
(2)动点P以每秒1个单位的速度,从点B出发沿着x轴正方向匀速运动,点Q是射线CE上的点,且∠PAQ=∠BAC,设P运动时间为t秒,求△POQ的面积S与t之间的函数关系式;
(3)在(2)的条件下,直线CE上是否存在一点F,使以点F、A、D、P为顶点的四边形是平行四边形?若存在,求出t值及Q点坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:△ABC的两边AB、AC的长是关于x的一元二次方程x2-(2k+3)x+p=0的两个实数根且p,k的函数关系如图所示,第三边BC的长为5.
(1)求出以k为自变量的p的函数关系式.
(2)k为何值时,△ABC是以BC为斜边的直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知△ABC的三边a、b、c的值都是正数,且a=b-1、c=b+1,又已知关于x的方程x2-5x+数学公式b+3=0的一个根恰好为b的值,求cosA的值.

查看答案和解析>>

科目:初中数学 来源:2001年湖北省宜昌市中考数学试卷(解析版) 题型:解答题

已知△ABC的三边a、b、c的值都是正数,且a=b-1、c=b+1,又已知关于x的方程x2-5x+b+3=0的一个根恰好为b的值,求cosA的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知在△ABC中,a、b、c分别是∠A、∠B、∠C的对边,且a、b是关于x的一元二次方程x2+4(c+2)=(c+4)x的两个根,点D在AB上,以BD为直径的⊙O切AC于点E,
(1)求证:△ABC是直角三角形;
(2)若tanA=
34
,求AE的长.

查看答案和解析>>


同步练习册答案