精英家教网 > 高中数学 > 题目详情
已知F1、F2是椭圆
x2
4
+
y2
3
=1
的两个焦点,平面内一个动点M满足|MF1|-|MF2|=2,则动点M的轨迹是(  )
A.双曲线B.双曲线的一个分支
C.两条射线D.一条射线
相关习题

科目:高中数学 来源: 题型:

已知F1、F2是椭圆
x2
4
+
y2
3
=1
的两个焦点,平面内一个动点M满足|MF1|-|MF2|=2,则动点M的轨迹是(  )
A、双曲线B、双曲线的一个分支
C、两条射线D、一条射线

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知F1、F2是椭圆
x2
4
+
y2
3
=1
的两个焦点,平面内一个动点M满足|MF1|-|MF2|=2,则动点M的轨迹是(  )
A.双曲线B.双曲线的一个分支
C.两条射线D.一条射线

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
4
+
y2
3
=1,F1F2是它的两个焦点,P是这个椭圆上任意一点,那么当|PF1|•|PF2|取最大值时,P、F1、F2三点(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P是椭圆
x2
4
+
y2
3
=1上的一点,F1、F2是该椭圆的两个焦点,若△PF1F2的内切圆的半径为
1
2
,则tan∠F1PF2=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2为椭圆
x2
a2
+
y2
b2
=1(a>0,b>0)
的两个焦点,过F2作椭圆的弦AB,若的△AF1B周长为16,椭圆的焦距是4
3
,则椭圆的方程是(  )

查看答案和解析>>

科目:高中数学 来源:成都二模 题型:单选题

已知P是椭圆
x2
4
+
y2
3
=1上的一点,F1、F2是该椭圆的两个焦点,若△PF1F2的内切圆半径为
1
2
,则
PF1
PF2
的值为(  )
A.
3
2
B.
9
4
C.-
9
4
D.0

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆
x2
4
+
y2
3
=1,F1F2是它的两个焦点,P是这个椭圆上任意一点,那么当|PF1|•|PF2|取最大值时,P、F1、F2三点(  )
A.共线
B.组成一个正三角形
C.组成一个等腰直角三角形
D.组成一个锐角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1、F2分别是椭圆
x2
4
+
y2
3
=1
的左、右焦点,曲线C是以坐标原点为顶点,以F2为焦点的抛物线,自点F1引直线交曲线C于P、Q两个不同的点,点P关于x轴对称的点记为M,设
F1P
F1Q

(1)写出曲线C的方程;
(2)若
F2M
=u
F2Q
,试用λ表示u;
(3)若λ∈[2,3],求|PQ|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1、F2分别是椭圆
x2
4
+
y2
3
=1的左、右焦点,曲线C是坐标原点为顶点,以F2为焦点的抛物线,过点F1的直线l交曲线C于x轴上方两个不同点P、Q,点P关于x轴的对称点为M,设
F1P
=λ
F1Q

(I)若λ∈[2,4],求直线L的斜率k的取值范围;
(II)求证:直线MQ过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•成都二模)已知P是椭圆
x2
4
+
y2
3
=1上的一点,F1、F2是该椭圆的两个焦点,若△PF1F2的内切圆半径为
1
2
,则
PF1
PF2
的值为(  )

查看答案和解析>>


同步练习册答案