精英家教网 > 高中数学 > 题目详情
已知x<a<0,则一定成立的不等式是(  )
A.x2<a2<0B.x2>ax>a2C.x2<ax<0D.xx2>a2>ax
相关习题

科目:高中数学 来源: 题型:

已知x<a<0,则一定成立的不等式是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知xa<0,则一定成立的不等式是

A.x2ax<0            B.x2axa2                         C.x2a2<0            D.x2a2ax

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知x<a<0,则一定成立的不等式是(  )
A.x2<a2<0B.x2>ax>a2C.x2<ax<0D.xx2>a2>ax

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省惠州市惠阳高级中学高一(下)第二次段考数学试卷(解析版) 题型:选择题

已知x<a<0,则一定成立的不等式是( )
A.x2<a2<0
B.x2>ax>a2
C.x2<ax<0
D.xx2>a2>a

查看答案和解析>>

科目:高中数学 来源: 题型:

15、已知函数f(x)=ax2+bx+c(a≠0),且f(x)=x无实根,则下列命题中:
(1)方程f[f(x)]=x一定无实根;
(2)若a>0,则不等式f[f(x)]>x对一切实数x都成立;
(3)若a<0,则必存在实数x0,使得f[f(x0)]>x0
(4)若a+b+c=0,则不等式f[f(x)]<x对一切x都成立.
其中正确命题的序号有
(1)(2)(4)
(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

8、已知f(x)=ax2+bx+c(a≠0),其方程f(x)=x无实根.现有四个命题①方程f([f(x)]=x)也一定没有实数根;②a>0若,则不等式f[f(x)]≥0对一切x∈R成立;③若a<0,则必存在实数x0使不等式f[f(x0)]>x0成立;④若a+b+c=0,则不等式f[f(x)]<x对一切x∈R成立.其中真命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+bx+c(a<0,C>0),并且f(-
1
2
)=0,则下列不等式一定成立的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)=logax,其中a>1.
(Ⅰ)当x∈[0,1]时,g(ax+2)>1恒成立,求a的取值范围;
(Ⅱ)设m(x)是定义在[s,t]上的函数,在(s,t)内任取n-1个数x1,x2,…,xn-2,xn-1,设x1<x2<…<xn-2<xn-1,令s=x0,t=xn,如果存在一个常数M>0,使得
n
i=1
|m(xi)-m(xi-1)|≤M
恒成立,则称函数m(x)在区间[s,t]上的具有性质P.
试判断函数f(x)=|g(x)|在区间[
1
a
a2]
上是否具有性质P?若具有性质P,请求出M的最小值;若不具有性质P,请说明理由.
(注:
n
i=1
|m(xi)-m(xi-1)|=|m(x1)-m(x0)|+|m(x2)-m(x1)|+…+|m(xn)-m(xn-1)|

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=0.3x-log2x,若f(a)f(b)f(c)>0且a,b,c是公差为正的等差数列的连续三项,x0是函数y=f(x)的一个零点,则下列关系式一定不成立的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)=ax2-2ax+1+b(a>0)在区间[2,4]上的最大值为9,最小值为1,记f(x)=g(|x|).
(Ⅰ)求实数a,b的值;
(Ⅱ)若不等式f(log2k)>f(2)成立,求实数k的取值范围;
(Ⅲ)定义在[p,q]上的函数φ(x),设p=x0<x1<…<xi-1<xi<…<xn-1=q,x1,x2,…,xn-1将区间[p,q]任意划分成n个小区间,如果存在一个常数M>0,使得和式
n
i=1
|φ(xi)-φ(xi-1)|≤M
恒成立,则称函数φ(x)为在[p,q]上的有界变差函数.试判断函数在[0,4]上f(x)是否为有界变差函数?若是,求M的最小值;若不是,请说明理由. (
n
i=1
f(xi)
表示f(x1)+f(x2)+…+f(xn))

查看答案和解析>>


同步练习册答案