精英家教网 > 初中数学 > 题目详情
△ABC中,AB=AC,且AC上的中线BD把这个三角形的周长分成12和6的两部分,则这个三角形的腰长为(  )
A.2B.4C.8D.4或8
相关习题

科目:初中数学 来源: 题型:

△ABC中,AB=AC,且AC上的中线BD把这个三角形的周长分成12和6的两部分,则这个三角形的腰长为(  )

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

△ABC中,AB=AC,且AC上的中线BD把这个三角形的周长分成12和6的两部分,则这个三角形的腰长为(  )
A.2B.4C.8D.4或8

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

△ABC中,AB=AC,且AC上的中线BD把这个三角形的周长分成12和6的两部分,则这个三角形的腰长为


  1. A.
    2
  2. B.
    4
  3. C.
    8
  4. D.
    4或8

查看答案和解析>>

科目:初中数学 来源:活学巧练七年级数学下 题型:044

如图所示,△ABC中,AB=AC,中线BD把这个三角形的周长分成15cm和11cm两部分,求BC的长.

阅读以下解题过程:

  解:因为AB=AC,AD=DC=AC=AB,且

  所以

  解得  AB=10cm,BC=6cm.

请问:上述解答是否正确?如不正确,请指出错在哪里,应如何改正.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读材料:
如图,△ABC中,AB=AC,P为底边BC上任意一点,点P到两腰的距离分别为r1,r2,腰上的高为h,连接AP,则S△ARP+S△ACP=S△ABC,即:
1
2
AB•r1+
1
2
AC•r2=
1
2
AC•h,∴r1+r2=h(定值).
(1)理解与应用:
如图,在边长为3的正方形ABCD中,点E为对角线BD上的一点,且BE=BC,F为CE上一点,FM⊥BC于M,FN⊥BD于N,试利用上述结论求出FM+FN的长.
(2)类比与推理:
如果把“等腰三角形”改成“等边三角形”,那么P的位置可以由“在底边上任一点”放宽为“在三角形内任一点”,即:
已知等边△ABC内任意一点P到各边的距离分别为r1,r2,r3,等边△ABC的高为h,试证明r1+r2+r3=h(定值).
(3)拓展与延伸:
若正n边形A1A2…An,内部任意一点P到各边的距离为r1r2…rn,请问r1+r2+…+rn是否为定值?如果是,请合理猜测出这个定值.
精英家教网精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

阅读材料:
如图,△ABC中,AB=AC,P为底边BC上任意一点,点P到两腰的距离分别为r1,r2,腰上的高为h,连接AP,则S△ARP+S△ACP=S△ABC,即:数学公式AB•r1+数学公式AC•r2=数学公式AC•h,∴r1+r2=h(定值).
(1)理解与应用:
如图,在边长为3的正方形ABCD中,点E为对角线BD上的一点,且BE=BC,F为CE上一点,FM⊥BC于M,FN⊥BD于N,试利用上述结论求出FM+FN的长.
(2)类比与推理:
如果把“等腰三角形”改成“等边三角形”,那么P的位置可以由“在底边上任一点”放宽为“在三角形内任一点”,即:
已知等边△ABC内任意一点P到各边的距离分别为r1,r2,r3,等边△ABC的高为h,试证明r1+r2+r3=h(定值).
(3)拓展与延伸:
若正n边形A1A2…An,内部任意一点P到各边的距离为r1r2…rn,请问r1+r2+…+rn是否为定值?如果是,请合理猜测出这个定值.

查看答案和解析>>

科目:初中数学 来源:2010年河北省唐山市滦南县青坨营中学中考数学模拟试卷(解析版) 题型:解答题

阅读材料:
如图,△ABC中,AB=AC,P为底边BC上任意一点,点P到两腰的距离分别为r1,r2,腰上的高为h,连接AP,则S△ARP+S△ACP=S△ABC,即:AB•r1+AC•r2=AC•h,∴r1+r2=h(定值).
(1)理解与应用:
如图,在边长为3的正方形ABCD中,点E为对角线BD上的一点,且BE=BC,F为CE上一点,FM⊥BC于M,FN⊥BD于N,试利用上述结论求出FM+FN的长.
(2)类比与推理:
如果把“等腰三角形”改成“等边三角形”,那么P的位置可以由“在底边上任一点”放宽为“在三角形内任一点”,即:
已知等边△ABC内任意一点P到各边的距离分别为r1,r2,r3,等边△ABC的高为h,试证明r1+r2+r3=h(定值).
(3)拓展与延伸:
若正n边形A1A2…An,内部任意一点P到各边的距离为r1r2…rn,请问r1+r2+…+rn是否为定值?如果是,请合理猜测出这个定值.

查看答案和解析>>

科目:初中数学 来源:2013年四川省内江市全安中学中考数学一模试卷(解析版) 题型:解答题

阅读材料:
如图,△ABC中,AB=AC,P为底边BC上任意一点,点P到两腰的距离分别为r1,r2,腰上的高为h,连接AP,则S△ARP+S△ACP=S△ABC,即:AB•r1+AC•r2=AC•h,∴r1+r2=h(定值).
(1)理解与应用:
如图,在边长为3的正方形ABCD中,点E为对角线BD上的一点,且BE=BC,F为CE上一点,FM⊥BC于M,FN⊥BD于N,试利用上述结论求出FM+FN的长.
(2)类比与推理:
如果把“等腰三角形”改成“等边三角形”,那么P的位置可以由“在底边上任一点”放宽为“在三角形内任一点”,即:
已知等边△ABC内任意一点P到各边的距离分别为r1,r2,r3,等边△ABC的高为h,试证明r1+r2+r3=h(定值).
(3)拓展与延伸:
若正n边形A1A2…An,内部任意一点P到各边的距离为r1r2…rn,请问r1+r2+…+rn是否为定值?如果是,请合理猜测出这个定值.

查看答案和解析>>

科目:初中数学 来源:2012年山东省德州市平原县中考数学一模试卷(解析版) 题型:解答题

阅读材料:
如图,△ABC中,AB=AC,P为底边BC上任意一点,点P到两腰的距离分别为r1,r2,腰上的高为h,连接AP,则S△ARP+S△ACP=S△ABC,即:AB•r1+AC•r2=AC•h,∴r1+r2=h(定值).
(1)理解与应用:
如图,在边长为3的正方形ABCD中,点E为对角线BD上的一点,且BE=BC,F为CE上一点,FM⊥BC于M,FN⊥BD于N,试利用上述结论求出FM+FN的长.
(2)类比与推理:
如果把“等腰三角形”改成“等边三角形”,那么P的位置可以由“在底边上任一点”放宽为“在三角形内任一点”,即:
已知等边△ABC内任意一点P到各边的距离分别为r1,r2,r3,等边△ABC的高为h,试证明r1+r2+r3=h(定值).
(3)拓展与延伸:
若正n边形A1A2…An,内部任意一点P到各边的距离为r1r2…rn,请问r1+r2+…+rn是否为定值?如果是,请合理猜测出这个定值.

查看答案和解析>>

科目:初中数学 来源:2012年湖北省咸宁市中考数学模拟试卷(八)(解析版) 题型:解答题

阅读材料:
如图,△ABC中,AB=AC,P为底边BC上任意一点,点P到两腰的距离分别为r1,r2,腰上的高为h,连接AP,则S△ARP+S△ACP=S△ABC,即:AB•r1+AC•r2=AC•h,∴r1+r2=h(定值).
(1)理解与应用:
如图,在边长为3的正方形ABCD中,点E为对角线BD上的一点,且BE=BC,F为CE上一点,FM⊥BC于M,FN⊥BD于N,试利用上述结论求出FM+FN的长.
(2)类比与推理:
如果把“等腰三角形”改成“等边三角形”,那么P的位置可以由“在底边上任一点”放宽为“在三角形内任一点”,即:
已知等边△ABC内任意一点P到各边的距离分别为r1,r2,r3,等边△ABC的高为h,试证明r1+r2+r3=h(定值).
(3)拓展与延伸:
若正n边形A1A2…An,内部任意一点P到各边的距离为r1r2…rn,请问r1+r2+…+rn是否为定值?如果是,请合理猜测出这个定值.

查看答案和解析>>


同步练习册答案