如果有穷数列a1,a2,…,an(n∈N*),满足条件:a1=an,a2=an-1,…,an=a1,即ai=an-i+1(i=1,2,…,n),我们称其为“对称数列”.例如:数列1,2,3,4,3,2,1就是“对称数列”.已知数列bn是项数为不超过2m(m>1,m∈N*)的“对称数列”,并使得1,2,22,…,2m-1依次为该数列中前连续的m项,则数列bn的前2008项和S2008可以是:①22008-1;②2(22008-1);③3?2m-1-22m-2009-1;④2m+1-22m-2008-1. 其中命题正确的个数为( ) |
相关习题
科目:高中数学
来源:
题型:
如果有穷数列a1,a2,…,an(n∈N*),满足条件:a1=an,a2=an-1,…,an=a1,即ai=an-i+1(i=1,2,…,n),我们称其为“对称数列”.例如:数列1,2,3,4,3,2,1就是“对称数列”.已知数列bn是项数为不超过2m(m>1,m∈N*)的“对称数列”,并使得1,2,22,…,2m-1依次为该数列中前连续的m项,则数列bn的前2008项和S2008可以是:①22008-1;②2(22008-1);③3•2m-1-22m-2009-1;④2m+1-22m-2008-1.
其中命题正确的个数为( )
查看答案和解析>>
科目:高中数学
来源:
题型:
如果有穷数列a1,a2,…,an(n∈N*)满足条件:a1=an,a2=an-1,…,an=a1,即ai=an-i+1,(i=1,2,…,n)我们称其为“对称数列”.例如:数列1,2,3,3,2,1 和数列1,2,3,4,3,2,1都为“对称数列”.已知数列{bn}是项数不超过2m(m>1,m∈N*)的“对称数列”,并使得1,2,22,…,2m-1依次为该数列中连续的前m项,则数列{bn}的前2009项和S2009所有可能为:①22009-1 ②2(22009-1)③3•2m-1-22m-2010-1 ④2m+1-22m-2009-1;其中正确的有( )个.
查看答案和解析>>
科目:高中数学
来源:黄冈模拟
题型:单选题
如果有穷数列a
1,a
2,…,a
n(n∈N
*),满足条件:a
1=a
n,a
2=a
n-1,…,a
n=a
1,即a
i=a
n-i+1(i=1,2,…,n),我们称其为“对称数列”.例如:数列1,2,3,4,3,2,1就是“对称数列”.已知数列b
n是项数为不超过2m(m>1,m∈N
*)的“对称数列”,并使得1,2,2
2,…,2
m-1依次为该数列中前连续的m项,则数列b
n的前2008项和S
2008可以是:①2
2008-1;②2(2
2008-1);③3•2
m-1-2
2m-2009-1;④2
m+1-2
2m-2008-1.
其中命题正确的个数为( )
查看答案和解析>>
科目:高中数学
来源:2010-2011学年浙江省绍兴市嵊州一中高三(上)9月月考数学试卷(理科)(解析版)
题型:选择题
如果有穷数列a1,a2,…,an(n∈N*)满足条件:a1=an,a2=an-1,…,an=a1,即ai=an-i+1,(i=1,2,…,n)我们称其为“对称数列”.例如:数列1,2,3,3,2,1 和数列1,2,3,4,3,2,1都为“对称数列”.已知数列{bn}是项数不超过2m(m>1,m∈N*)的“对称数列”,并使得1,2,22,…,2m-1依次为该数列中连续的前m项,则数列{bn}的前2009项和S2009所有可能为:①22009-1 ②2(22009-1)③3•2m-1-22m-2010-1 ④2m+1-22m-2009-1;其中正确的有( )个.
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中数学
来源:2010年浙江省杭州市教考联谊学校高三联考数学试卷(理科)(解析版)
题型:选择题
如果有穷数列a1,a2,…,an(n∈N*)满足条件:a1=an,a2=an-1,…,an=a1,即ai=an-i+1,(i=1,2,…,n)我们称其为“对称数列”.例如:数列1,2,3,3,2,1 和数列1,2,3,4,3,2,1都为“对称数列”.已知数列{bn}是项数不超过2m(m>1,m∈N*)的“对称数列”,并使得1,2,22,…,2m-1依次为该数列中连续的前m项,则数列{bn}的前2009项和S2009所有可能为:①22009-1 ②2(22009-1)③3•2m-1-22m-2010-1 ④2m+1-22m-2009-1;其中正确的有( )个.
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中数学
来源:2007-2008学年湖北省“鄂南高中、黄石二中、华师一附中、荆州中学、孝感高中、襄樊四中、襄樊五中、黄冈中学”八校高三第一次联考数学试卷(理科)(解析版)
题型:选择题
如果有穷数列a1,a2,…,an(n∈N*),满足条件:a1=an,a2=an-1,…,an=a1,即ai=an-i+1(i=1,2,…,n),我们称其为“对称数列”.例如:数列1,2,3,4,3,2,1就是“对称数列”.已知数列bn是项数为不超过2m(m>1,m∈N*)的“对称数列”,并使得1,2,22,…,2m-1依次为该数列中前连续的m项,则数列bn的前2008项和S2008可以是:①22008-1;②2(22008-1);③3•2m-1-22m-2009-1;④2m+1-22m-2008-1.
其中命题正确的个数为( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中数学
来源:2010-2011 学年湖北省“黄冈中学、黄石二中、华师一附中、荆州中学、孝感高中、襄樊四中、襄樊五中、鄂南高中”八校高三第一次联考数学试卷(理科)B(解析版)
题型:选择题
如果有穷数列a1,a2,…,an(n∈N*),满足条件:a1=an,a2=an-1,…,an=a1,即ai=an-i+1(i=1,2,…,n),我们称其为“对称数列”.例如:数列1,2,3,4,3,2,1就是“对称数列”.已知数列bn是项数为不超过2m(m>1,m∈N*)的“对称数列”,并使得1,2,22,…,2m-1依次为该数列中前连续的m项,则数列bn的前2008项和S2008可以是:①22008-1;②2(22008-1);③3•2m-1-22m-2009-1;④2m+1-22m-2008-1.
其中命题正确的个数为( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中数学
来源:
题型:单选题
如果有穷数列a1,a2,…,an(n∈N*),满足条件:a1=an,a2=an-1,…,an=a1,即ai=an-i+1(i=1,2,…,n),我们称其为“对称数列”.例如:数列1,2,3,4,3,2,1就是“对称数列”.已知数列bn是项数为不超过2m(m>1,m∈N*)的“对称数列”,并使得1,2,22,…,2m-1依次为该数列中前连续的m项,则数列bn的前2008项和S2008可以是:①22008-1;②2(22008-1);③3•2m-1-22m-2009-1;④2m+1-22m-2008-1.
其中命题正确的个数为
- A.
1
- B.
2
- C.
3
- D.
4
查看答案和解析>>
科目:高中数学
来源:
题型:
11、如果有穷数列a
1,a
2,…,a
n(n为正整数)满足条件a
1=a
n,a
2=a
n-1…,a
n=a
1,即a
k=a
n-k+1(k=1,2 …,n ),我们称其为“对称数列”.设{b
n}是项数为7的“对称数列”,其中b
1,b
2,b
3,b
4成等差数列,且b1=2,b2+b4=16,依次写出{b
n}的每一项
2,5,8,11,8,5,2
查看答案和解析>>
科目:高中数学
来源:
题型:填空题
如果有穷数列a1,a2,…,an(n为正整数)满足条件a1=an,a2=an-1…,an=a1,即ak=an-k+1(k=1,2 …,n ),我们称其为“对称数列”.设{bn}是项数为7的“对称数列”,其中b1,b2,b3,b4成等差数列,且b1=2,b2+b4=16,依次写出{bn}的每一项________
查看答案和解析>>