精英家教网 > 高中数学 > 题目详情
已知二次函数f(x)=ax2+bx+c对于任意实数x都有f(x)≥0.设b>0,则
a+b+c
b
的最小值为(  )
A.3B.
5
2
C.2D.
3
2
相关习题

科目:高中数学 来源:许昌一模 题型:单选题

已知二次函数f(x)=ax2+bx+c对于任意实数x都有f(x)≥0.设b>0,则
a+b+c
b
的最小值为(  )
A.3B.
5
2
C.2D.
3
2

查看答案和解析>>

科目:高中数学 来源:2011年河南省新乡、许昌、平顶山高考数学一模试卷(文科)(解析版) 题型:选择题

已知二次函数f(x)=ax2+bx+c对于任意实数x都有f(x)≥0.设b>0,则的最小值为( )
A.3
B.
C.2
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c的导数为f′(x),f′(0)>0,对于任意实数x都有f(x)≥0,则
f(1)
f′(0)
的最小值为(  )
A、3
B、
5
2
C、2
D、
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c的导数为f′(x),f′(0)>0,对于任意实数x都有f(x)≥0,则
f(1)f′(0)
的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c.
(1)若a>b>c且f(1)=0,试证明f(x)必有两个零点;
(2)若对x1,x2∈R且x1<x2,f(x1)≠f(x2),方程f(x)=
12
[f(x1)+f(x2)]有两个不等实根,证明必有一实根属于(x1,x2).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c,(a,b,c∈R)满足:对任意实数x,都有f(x)≥x,且当x∈(1,3)时,有f(x)≤
1
8
(x+2)2
成立.
(1)证明:f(2)=2;
(2)若f(-2)=0,f(x)的表达式;
(3)设g(x)=f(x)-
m
2
x
,x∈[0,+∞),若g(x)图上的点都位于直线y=
1
4
的上方,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c和“伪二次函数”g(x)=ax2+bx+clnx(abc≠0).
(1)证明:只要a<0,无论b取何值,函数g(x)在定义域内不可能总为增函数;
(2)在同一函数图象上任意取不同两点A(x1,y1),B(x2,y2),线段AB中点为C(x0,y0),记直线AB的斜率为k,
①对于二次函数f(x)=ax2+bx+c,求证:k=f′(x0);
②对于“伪二次函数”g(x)=ax2+bx+clnx,是否有①同样的性质?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c(a,b,c均为实数),满足a-b+c=0,对于任意实数x 都有f (x)-x≥0,并且当x∈(0,2)时,有f (x)≤(
x+1
2
)2

(1)求f (1)的值;
(2)证明:ac≥
1
16

(3)当x∈[-2,2]且a+c取得最小值时,函数F(x)=f (x)-mx (m为实数)是单调的,求证:m≤-
1
2
或m≥
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c(a,b,c为实数a不为零),且同时满足下列条件:
(1)f(-1)=0;
(2)对于任意的实数x,都有f(x)-x≥0;
(3)当x∈(0,2)时有f(x)≤(
x+12
)2

①求f(1);
②求a,b,c的值;
③当x∈[-1,1]时,函数g(x)=f(x)-mx(m∈R)是单调函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c的导数为f′(x),f′(0)>0,对于任意实数x,有f(x)≥0,则
f(1)
f′(0)
的最小值为(  )

查看答案和解析>>


同步练习册答案