精英家教网 > 初中数学 > 题目详情
点A′(3,-2)可以由点A(-3,2)通过两次平移得到,正确的移法是(  )
A.先向左平移6个单位长度,再向上平移4个单位长度
B.先向右平移6个单位长度,再向上平移4个单位长度
C.先向左平移6个单位长度,再向下平移4个单位长度
D.先向右平移6个单位长度,再向下平移4个单位长度
相关习题

科目:初中数学 来源: 题型:解答题

通过对苏科版八(下)教材一道习题的探索研究,我们知道:一次函数y=x-1的图象可以由正比例函数y=x的图象向右平移1个单位长度得到类似的,函数数学公式的图象是由反比例函数数学公式的图象向左平移2个单位长度得到.灵活运用这一知识解决问题.
如图,已知反比例函数数学公式的图象C与正比例函数y=ax(a≠0)的图象l相交于点A(2,2)和点B.
(1)写出点B的坐标,并求a的值;
(2)将函数数学公式的图象和直线AB同时向右平移n(n>0)个单位长度,得到的图象分别记为C′和l′,已知图象C′经过点M(2,4).
①求n的值;
②分别写出平移后的两个图象C′和l′对应的函数关系式;
③直接写出不等式数学公式的解集.

查看答案和解析>>

科目:初中数学 来源:2013年江苏省镇江市中考数学试卷(解析版) 题型:解答题

通过对苏科版八(下)教材一道习题的探索研究,我们知道:一次函数y=x-1的图象可以由正比例函数y=x的图象向右平移1个单位长度得到类似的,函数的图象是由反比例函数的图象向左平移2个单位长度得到.灵活运用这一知识解决问题.
如图,已知反比例函数的图象C与正比例函数y=ax(a≠0)的图象l相交于点A(2,2)和点B.
(1)写出点B的坐标,并求a的值;
(2)将函数的图象和直线AB同时向右平移n(n>0)个单位长度,得到的图象分别记为C′和l′,已知图象C′经过点M(2,4).
①求n的值;
②分别写出平移后的两个图象C′和l′对应的函数关系式;
③直接写出不等式的解集.

查看答案和解析>>

科目:初中数学 来源:2013年初中毕业升学考试(江苏镇江卷)数学(解析版) 题型:解答题

通过对苏科版八(下)教材一道习题的探索研究,我们知道:一次函数y=x﹣1的图象可以由正比例函数y=x的图象向右平移1个单位长度得到类似的,函数的图象是由反比例函数的图象向左平移2个单位长度得到.灵活运用这一知识解决问题.

如图,已知反比例函数的图象C与正比例函数y=ax(a≠0)的图象l相交于点A(2,2)和点B.

(1)写出点B的坐标,并求a的值;

(2)将函数的图象和直线AB同时向右平移n(n>0)个单位长度,得到的图象分别记为C′和l′,已知图象C′经过点M(2,4).

①求n的值;

②分别写出平移后的两个图象C′和l′对应的函数关系式;

③直接写出不等式的解集.

 

 

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

通过对苏科版八(下)教材一道习题的探索研究,我们知道:一次函数y=x﹣1的图象可以由正比例函数y=x的图象向右平移1个单位长度得到类似的,函数的图象是由反比例函数的图象向左平移2个单位长度得到.灵活运用这一知识解决问题.
如图,已知反比例函数的图象C与正比例函数y=ax(a≠0)的图象l相交于点A(2,2)和点B.
(1)写出点B的坐标,并求a的值;
(2)将函数的图象和直线AB同时向右平移n(n>0)个单位长度,得到的图象分别记为C′和l′,已知图象C′经过点M(2,4).
①求n的值;
②分别写出平移后的两个图象C′和l′对应的函数关系式;
③直接写出不等式的解集.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

通过对苏科版八(下)教材一道习题的探索研究,我们知道:一次函数y=x﹣1的图象可以由正比例函数y=x的图象向右平移1个单位长度得到类似的,函数的图象是由反比例函数的图象向左平移2个单位长度得到.灵活运用这一知识解决问题.
如图,已知反比例函数的图象C与正比例函数y=ax(a≠0)的图象l相交于点A(2,2)和点B.
(1)写出点B的坐标,并求a的值;
(2)将函数的图象和直线AB同时向右平移n(n>0)个单位长度,得到的图象分别记为C′和l′,已知图象C′经过点M(2,4).
①求n的值;
②分别写出平移后的两个图象C′和l′对应的函数关系式;
③直接写出不等式的解集.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

通过对苏科版八(下)教材一道习题的探索研究,我们知道:一次函数y=x-1的图象可以由正比例函数y=x的图象向右平移1个单位长度得到类似的,函数y=
k
x+2
(k≠0)
的图象是由反比例函数y=
k
x
(k≠0)
的图象向左平移2个单位长度得到.灵活运用这一知识解决问题.
如图,已知反比例函数y=
4
x
的图象C与正比例函数y=ax(a≠0)的图象l相交于点A(2,2)和点B.
(1)写出点B的坐标,并求a的值;
(2)将函数y=
4
x
的图象和直线AB同时向右平移n(n>0)个单位长度,得到的图象分别记为C′和l′,已知图象C′经过点M(2,4).
①求n的值;
②分别写出平移后的两个图象C′和l′对应的函数关系式;
③直接写出不等式
4
x-1
≤ax-1
的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•镇江)通过对苏科版八(下)教材一道习题的探索研究,我们知道:一次函数y=x-1的图象可以由正比例函数y=x的图象向右平移1个单位长度得到类似的,函数y=
k
x+2
(k≠0)
的图象是由反比例函数y=
k
x
(k≠0)
的图象向左平移2个单位长度得到.灵活运用这一知识解决问题.
如图,已知反比例函数y=
4
x
的图象C与正比例函数y=ax(a≠0)的图象l相交于点A(2,2)和点B.
(1)写出点B的坐标,并求a的值;
(2)将函数y=
4
x
的图象和直线AB同时向右平移n(n>0)个单位长度,得到的图象分别记为C′和l′,已知图象C′经过点M(2,4).
①求n的值;
②分别写出平移后的两个图象C′和l′对应的函数关系式;
③直接写出不等式
4
x-1
≤ax-1
的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

点A′(3,-2)可以由点A(-3,2)通过两次平移得到,正确的移法是(  )

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

点A′(3,-2)可以由点A(-3,2)通过两次平移得到,正确的移法是(  )
A.先向左平移6个单位长度,再向上平移4个单位长度
B.先向右平移6个单位长度,再向上平移4个单位长度
C.先向左平移6个单位长度,再向下平移4个单位长度
D.先向右平移6个单位长度,再向下平移4个单位长度

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•镇江)对于二次函数y=x2-3x+2和一次函数y=-2x+4,把y=t(x2-3x+2)+(1-t)(-2x+4)称为这两个函数的“再生二次函数”,其中t是不为零的实数,其图象记作抛物线E.
现有点A(2,0)和抛物线E上的点B(-1,n),请完成下列任务:
【尝试】
(1)当t=2时,抛物线E的顶点坐标是
(1,-2)
(1,-2)

(2)判断点A是否在抛物线E上;
(3)求n的值.
【发现】
通过(2)和(3)的演算可知,对于t取任何不为零的实数,抛物线E总过定点,这个定点的坐标是
A(2,0)、B(-1,6)
A(2,0)、B(-1,6)

【应用1】
二次函数y=-3x2+5x+2是二次函数y=x2-3x+2和一次函数y=-2x+4的一个“再生二次函数”吗?如果是,求出t的值;如果不是,说明理由.
【应用2】
以AB为一边作矩形ABCD,使得其中一个顶点落在y轴上,若抛物线E经过点A、B、C、D中的三点,求出所有符合条件的t的值.

查看答案和解析>>


同步练习册答案