精英家教网 > 高中数学 > 题目详情
已知圆的方程为(x-a)2+(y-b)2=r2(r>0),下列结论错误的是(  )
A.当a2+b2=r2时,圆必过原点
B.当a=r时,圆与y轴相切
C.当b=r时,圆与x轴相切
D.当b<r时,圆与x轴相交
相关习题

科目:高中数学 来源: 题型:

3、已知圆的方程为(x-a)2+(y-b)2=r2(r>0),下列结论错误的是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知圆的方程为(x-a)2+(y-b)2=r2(r>0),下列结论错误的是(  )
A.当a2+b2=r2时,圆必过原点
B.当a=r时,圆与y轴相切
C.当b=r时,圆与x轴相切
D.当b<r时,圆与x轴相交

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知圆的方程为(x-a)2+(y-b)2=r2(r>0),下列结论错误的是


  1. A.
    当a2+b2=r2时,圆必过原点
  2. B.
    当a=r时,圆与y轴相切
  3. C.
    当b=r时,圆与x轴相切
  4. D.
    当b<r时,圆与x轴相交

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆P:(x-a)2+(y-b)2=r2(r≠0),满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3:1.求在满足条件①②的所有圆中,使代数式a2-b2-2b+4取得最小值时圆的方程.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省扬州市高一(下)期末数学试卷(解析版) 题型:解答题

已知圆O:x2+y2=r2(r>0)与直线x-y+2=0相切.
(1)求圆O的方程;
(2)过点(1,)的直线l截圆所得弦长为2,求直线l的方程;
(3)设圆O与x轴的负半轴的交点为A,过点A作两条斜率分别为k1,k2的直线交圆O于B,C两点,且k1k2=-2,试证明直线BC恒过一个定点,并求出该定点坐标.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省扬州中学高一(下)期末数学试卷(解析版) 题型:解答题

已知圆O:x2+y2=r2(r>0)与直线x-y+2=0相切.
(1)求圆O的方程;
(2)过点(1,)的直线l截圆所得弦长为2,求直线l的方程;
(3)设圆O与x轴的负半轴的交点为A,过点A作两条斜率分别为k1,k2的直线交圆O于B,C两点,且k1k2=-2,试证明直线BC恒过一个定点,并求出该定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆P:(x-a)2+(y-b)2=r2(r≠0),满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3:1.求在满足条件①②的所有圆中,使代数式a2-b2-2b+4取得最小值时圆的方程.

查看答案和解析>>

科目:高中数学 来源:《第4章 圆与方程》2012年单元测试卷(长白山一中)(解析版) 题型:解答题

已知圆P:(x-a)2+(y-b)2=r2(r≠0),满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3:1.求在满足条件①②的所有圆中,使代数式a2-b2-2b+4取得最小值时圆的方程.

查看答案和解析>>

科目:高中数学 来源:《第4章 圆与方程》2013年单元测试卷(1)(解析版) 题型:解答题

已知圆P:(x-a)2+(y-b)2=r2(r≠0),满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3:1.求在满足条件①②的所有圆中,使代数式a2-b2-2b+4取得最小值时圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:x+2y+1=0,集合A={n|n<6,n∈N*},从A中任取3个不同的元素分别作为圆方程(x-a)2+(y-b)2=r2中的a、b、r,则使圆心(a,b)与原点的连线垂直于直线l的概率等于
 

查看答案和解析>>


同步练习册答案