在区间(-∞,1)上递增的函数是( )
|
科目:高中数学 来源:2008年浙江省宁波市十校高三联考数学试卷(文科)(解析版) 题型:选择题
科目:高中数学 来源:2011-2012学年河北省高三8月月考理科数学试卷(解析版) 题型:解答题
函数
是定义在
上的奇函数,且
。
(1)求实数a,b,并确定函数
的解析式;
(2)判断
在(-1,1)上的单调性,并用定义证明你的结论;
(3)写出
的单调减区间,并判断
有无最大值或最小值?如有,写出最大值或最小值。(本小问不需要说明理由)
【解析】本试题主要考查了函数的解析式和奇偶性和单调性的综合运用。第一问中,利用函数
是定义在
上的奇函数,且
。
解得
,![]()
(2)中,利用单调性的定义,作差变形判定可得单调递增函数。
(3)中,由2知,单调减区间为
,并由此得到当,x=-1时,
,当x=1时,![]()
解:(1)
是奇函数,
。
即
,
,
………………2分
,又
,
,
,![]()
(2)任取
,且
,
,………………6分
,![]()
,
,
,
,
在(-1,1)上是增函数。…………………………………………8分
(3)单调减区间为
…………………………………………10分
当,x=-1时,
,当x=1时,
。
科目:高中数学 来源: 题型:
| ax+1 |
| x+2 |
A、(0,
| ||
B、(
| ||
| C、(-2,+∞) | ||
| D、(-∞,-1)∪(1,+∞) |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com