精英家教网 > 初中数学 > 题目详情
抛物线y=2(x-3)2-5与y轴的交点坐标是(  )
A.(0,5)B.(0,13)C.(0,4)D.(3-5)
相关习题

科目:初中数学 来源: 题型:

已知抛物线)与轴相交于点,顶点为.直线分别与轴,轴相交于两点,并且与直线相交于点.

(1)填空:试用含的代数式分别表示点的坐标,则

(2)如图,将沿轴翻折,若点的对应点′恰好落在抛物线上,′与轴交于点,连结,求的值和四边形的面积;

(3)在抛物线)上是否存在一点,使得以为顶点的四边形是平行四边形?若存在,求出点的坐标;若不存在,试说明理由.

 


查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线)与轴相交于点,顶点为.直线分别与轴,轴相交于两点,并且与直线相交于点.

(1)填空:试用含的代数式分别表示点的坐标,则

(2)如图,将沿轴翻折,若点的对应点′恰好落在抛物线上,′与轴交于点,连结,求的值和四边形的面积;

(3)在抛物线)上是否存在一点,使得以为顶点的四边形是平行四边形?若存在,求出点的坐标;若不存在,试说明理由.

 


查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线)与轴相交于点,顶点为.直线分别与轴,轴相交于两点,并且与直线相交于点.

(1)填空:试用含的代数式分别表示点的坐标,则

(2)如图,将沿轴翻折,若点的对应点′恰好落在抛物线上,′与轴交于点,连结,求的值和四边形的面积;

(3)在抛物线)上是否存在一点,使得以为顶点的四边形是平行四边形?若存在,求出点的坐标;若不存在,试说明理由.

 


查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线)与轴相交于点,顶点为.直线分别与轴,轴相交于两点,并且与直线相交于点.

(1)填空:试用含的代数式分别表示点的坐标,则

(2)如图,将沿轴翻折,若点的对应点′恰好落在抛物线上,′与轴交于点,连结,求的值和四边形的面积;

(3)在抛物线)上是否存在一点,使得以为顶点的四边形是平行四边形?若存在,求出点的坐标;若不存在,试说明理由.

 


查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线)与轴相交于点,顶点为.直线分别与轴,轴相交于两点,并且与直线相交于点.

(1)填空:试用含的代数式分别表示点的坐标,则

(2)如图,将沿轴翻折,若点的对应点′恰好落在抛物线上,′与轴交于点,连结,求的值和四边形的面积;

(3)在抛物线)上是否存在一点,使得以为顶点的四边形是平行四边形?若存在,求出点的坐标;若不存在,试说明理由.

 


查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线)与轴相交于点,顶点为.直线分别与轴,轴相交于两点,并且与直线相交于点.

   (1)填空:试用含的代数式分别表示点的坐标,则          

   (2)如图1,将沿轴翻折,若点的对应点′恰好落在抛物线上, ′与轴交于点,连结,求的值和四边形的面积;

(3)在抛物线)上是否存在一点,使得以为顶点的四边形是平行四边形?若存在,求出点的坐标;若不存在,试说明理由.

 


查看答案和解析>>

科目:初中数学 来源:2013届湖北省宜昌中学九年级下学期第一次月考数学试卷(带解析) 题型:解答题

(12分)已知抛物线)与轴相交于点,顶点为.直线分别与轴,轴相交于两点,并且与直线相交于点.
(1)填空:试用含的代数式分别表示点的坐标,则
(2)如图,将沿轴翻折,若点的对应点′恰好落在抛物线上,′与轴交于点,连结,求的值和四边形的面积;

(3)在抛物线)上是否存在一点,使得以为顶点的四边形是平行四边形?若存在,求出点的坐标;若不存在,试说明理由.

查看答案和解析>>

科目:初中数学 来源:2012-2013学年浙江温州市育英学校八年级第二学期开学考试数学试卷(带解析) 题型:解答题

已知抛物线)与轴相交于点,顶点为.直线 分别与轴,轴相交于两点,并且与直线相交于点.
(1)如图,将沿轴翻折,若点的对应点′恰好落在抛物线上,′与轴交于点,连结,求的值和四边形的面积;

(2)在抛物线)上是否存在一点,使得以为顶点的四边形是平行四边形?若存在,求出点的坐标;若不存在,试说明理由.

查看答案和解析>>

科目:初中数学 来源:2014届浙江温州市八年级第二学期开学考试数学试卷(解析版) 题型:解答题

已知抛物线)与轴相交于点,顶点为.直线 分别与轴,轴相交于两点,并且与直线相交于点.

(1)如图,将沿轴翻折,若点的对应点′恰好落在抛物线上,′与轴交于点,连结,求的值和四边形的面积;

(2)在抛物线)上是否存在一点,使得以为顶点的四边形是平行四边形?若存在,求出点的坐标;若不存在,试说明理由.

 

查看答案和解析>>

科目:初中数学 来源:2012-2013学年湖北省九年级下学期第一次月考数学试卷(解析版) 题型:解答题

(12分)已知抛物线)与轴相交于点,顶点为.直线分别与轴,轴相交于两点,并且与直线相交于点.

(1)填空:试用含的代数式分别表示点的坐标,则

(2)如图,将沿轴翻折,若点的对应点′恰好落在抛物线上,′与轴交于点,连结,求的值和四边形的面积;

(3)在抛物线)上是否存在一点,使得以为顶点的四边形是平行四边形?若存在,求出点的坐标;若不存在,试说明理由.

 

查看答案和解析>>


同步练习册答案