精英家教网 > 初中数学 > 题目详情
若⊙O的直径为10,圆心O为坐标原点,点P的坐标为(4,3),则点P与⊙O的位置关系是(  )
A.点P在⊙O上B.点P在⊙O内
C.点P在⊙O外D.以上都有可能
相关习题

科目:初中数学 来源:2009-2010学年山东省烟台市招远市九年级(上)期末数学试卷(解析版) 题型:选择题

若⊙O的直径为10,圆心O为坐标原点,点P的坐标为(4,3),则点P与⊙O的位置关系是( )
A.点P在⊙O上
B.点P在⊙O内
C.点P在⊙O外
D.以上都有可能

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

若⊙O的直径为10,圆心O为坐标原点,点P的坐标为(4,3),则点P与⊙O的位置关系是


  1. A.
    点P在⊙O上
  2. B.
    点P在⊙O内
  3. C.
    点P在⊙O外
  4. D.
    以上都有可能

查看答案和解析>>

科目:初中数学 来源:2011-2012学年广东省惠州市惠城区十八校九年级4月模拟考试数学卷(解析版) 题型:解答题

如图,在平面直角坐标系中,点O是坐标原点,四边形AOCB是梯形,ABOC,点A的坐标为(0,8),点C的坐标为(10,0),OBOC.点PC点出发,沿线段CO以5个单位/秒的速度向终点O匀速运动,过点PPHOB,垂足为H.

      (1)求点B的坐标;

      (2)设△HBP的面积为SS≠0),点P的运动时间为t秒,求St之间的函数关系式;当t为何值时,△HBP的面积最大,并求出最大面积;

(3)分别以PH为圆心,PCHB为半径作⊙P和⊙H,当两圆外切时,求此时t的值.

【解析】(1)根据已知得出OB=OC=10,BN=OA=8,即可得出B点的坐标;

(2)利用△BON∽△POH,得出对应线段成比例,即可得出S与t之间的函数关系式;从而求出△HBP的最大面积;

(3)若⊙P和⊙H两圆外切 ,则须HB+PC=HP,从而求解

 

查看答案和解析>>

科目:初中数学 来源: 题型:

OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴上,点C在y轴上,OA=10,OC=6.
(1)如图,在AB上取一点M,使得△CBM沿CM翻折后,点B落在x轴上,记作B'点.求B'点的坐标;
(2)求折痕CM所在直线的解析式;
(3)作B'G∥AB交CM于点G,若抛物线y=
16
x2+m过点G,求抛物线的精英家教网解析式,并判断以原点O为圆心,OG为半径的圆与抛物线除交点G外,是否还有交点?若有,请直接写出交点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴上,点C在y轴上,OA=10,OC=6.
(1)如图,在AB上取一点M,使得△CBM沿CM翻折后,点B落在x轴上,记作B'点.求B'点的坐标;
(2)求折痕CM所在直线的解析式;
(3)作B'G∥AB交CM于点G,若抛物线y=数学公式x2+m过点G,求抛物线的解析式,并判断以原点O为圆心,OG为半径的圆与抛物线除交点G外,是否还有交点?若有,请直接写出交点的坐标.

查看答案和解析>>

科目:初中数学 来源:《第2章 二次函数》2010年市立一中水平检测试卷(解析版) 题型:解答题

OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴上,点C在y轴上,OA=10,OC=6.
(1)如图,在AB上取一点M,使得△CBM沿CM翻折后,点B落在x轴上,记作B'点.求B'点的坐标;
(2)求折痕CM所在直线的解析式;
(3)作B'G∥AB交CM于点G,若抛物线y=x2+m过点G,求抛物线的解析式,并判断以原点O为圆心,OG为半径的圆与抛物线除交点G外,是否还有交点?若有,请直接写出交点的坐标.

查看答案和解析>>

科目:初中数学 来源:第2章《二次函数》中考题集(46):2.7 最大面积是多少(解析版) 题型:解答题

OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴上,点C在y轴上,OA=10,OC=6.
(1)如图,在AB上取一点M,使得△CBM沿CM翻折后,点B落在x轴上,记作B'点.求B'点的坐标;
(2)求折痕CM所在直线的解析式;
(3)作B'G∥AB交CM于点G,若抛物线y=x2+m过点G,求抛物线的解析式,并判断以原点O为圆心,OG为半径的圆与抛物线除交点G外,是否还有交点?若有,请直接写出交点的坐标.

查看答案和解析>>

科目:初中数学 来源:第34章《二次函数》中考题集(50):34.4 二次函数的应用(解析版) 题型:解答题

OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴上,点C在y轴上,OA=10,OC=6.
(1)如图,在AB上取一点M,使得△CBM沿CM翻折后,点B落在x轴上,记作B'点.求B'点的坐标;
(2)求折痕CM所在直线的解析式;
(3)作B'G∥AB交CM于点G,若抛物线y=x2+m过点G,求抛物线的解析式,并判断以原点O为圆心,OG为半径的圆与抛物线除交点G外,是否还有交点?若有,请直接写出交点的坐标.

查看答案和解析>>

科目:初中数学 来源:第2章《二次函数》中考题集(49):2.3 二次函数的应用(解析版) 题型:解答题

OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴上,点C在y轴上,OA=10,OC=6.
(1)如图,在AB上取一点M,使得△CBM沿CM翻折后,点B落在x轴上,记作B'点.求B'点的坐标;
(2)求折痕CM所在直线的解析式;
(3)作B'G∥AB交CM于点G,若抛物线y=x2+m过点G,求抛物线的解析式,并判断以原点O为圆心,OG为半径的圆与抛物线除交点G外,是否还有交点?若有,请直接写出交点的坐标.

查看答案和解析>>

科目:初中数学 来源:第27章《二次函数》中考题集(49):27.3 实践与探索(解析版) 题型:解答题

OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴上,点C在y轴上,OA=10,OC=6.
(1)如图,在AB上取一点M,使得△CBM沿CM翻折后,点B落在x轴上,记作B'点.求B'点的坐标;
(2)求折痕CM所在直线的解析式;
(3)作B'G∥AB交CM于点G,若抛物线y=x2+m过点G,求抛物线的解析式,并判断以原点O为圆心,OG为半径的圆与抛物线除交点G外,是否还有交点?若有,请直接写出交点的坐标.

查看答案和解析>>


同步练习册答案