精英家教网 > 高中数学 > 题目详情
函数f(x)的定义域是R,f(0)=2,对任意x∈R,f(x)+f′(x)>1,则不等式ex?f(x)>ex+1的解集为(  )
A.{x|x>0}B.{x|x<0}
C.{x|x<-1,或x>1}D.{x|x<-1,或0<x<1}
相关习题

科目:高中数学 来源: 题型:

函数f(x)的定义域是R,f(0)=2,对任意x∈R,f(x)+f′(x)>1,则不等式ex•f(x)>ex+1的解集为(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数f(x)的定义域是R,f(0)=2,对任意x∈R,f(x)+f′(x)>1,则不等式ex•f(x)>ex+1的解集为(  )
A.{x|x>0}B.{x|x<0}
C.{x|x<-1,或x>1}D.{x|x<-1,或0<x<1}

查看答案和解析>>

科目:高中数学 来源:2013年吉林省实验中学高考数学二模试卷(文科)(解析版) 题型:选择题

函数f(x)的定义域是R,f(0)=2,对任意x∈R,f(x)+f′(x)>1,则不等式ex•f(x)>ex+1的解集为( )
A.{x|x>0}
B.{x|x<0}
C.{x|x<-1,或x>1}
D.{x|x<-1,或0<x<1}

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

函数f(x)的定义域是R,f(0)=2,对任意x∈R,f(x)+f′(x)>1,则不等式ex•f(x)>ex+1的解集为


  1. A.
    {x|x>0}
  2. B.
    {x|x<0}
  3. C.
    {x|x<-1,或x>1}
  4. D.
    {x|x<-1,或0<x<1}

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)的定义域是R,对任意实数a,b都有f(a)+f(b)=f(a+b).当x>0时,f(x)>0且f(2)=3.
(1)判断的奇偶性、单调性;
(2)求在区间[-2,4]上的最大值、最小值;
(3)当θ∈[0,
π2
]
时,f(cos2θ-3)+f(4m-2mcosθ)>0对所有θ都成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数f(x)的定义域是R,对任意实数a,b都有f(a)+f(b)=f(a+b).当x>0时,f(x)>0且f(2)=3.
(1)判断的奇偶性、单调性;
(2)求在区间[-2,4]上的最大值、最小值;
(3)当数学公式时,f(cos2θ-3)+f(4m-2mcosθ)>0对所有θ都成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:山东模拟 题型:单选题

函数f(x)的定义域是R,若f(x+1)是奇函数,是f(x+2)偶函数.下列四个结论:
①f(x+4)=f(x);   ②f(x)的图象关于点(2k,0)(k∈Z)对称;  ③f(x+3)是奇函数;    ④f(x)的图象关于直线x=2k+1(k∈Z)对称.其中正确命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:2010年山东省潍坊日照两市安丘、诸城、五莲、莒县高三联考数学试卷(理科)(解析版) 题型:选择题

函数f(x)的定义域是R,若f(x+1)是奇函数,是f(x+2)偶函数.下列四个结论:
①f(x+4)=f(x);   ②f(x)的图象关于点(2k,0)(k∈Z)对称;  ③f(x+3)是奇函数;    ④f(x)的图象关于直线x=2k+1(k∈Z)对称.其中正确命题的个数是( )
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

函数f(x)的定义域是R,若f(x+1)是奇函数,是f(x+2)偶函数.下列四个结论:
①f(x+4)=f(x);  ②f(x)的图象关于点(2k,0)(k∈Z)对称; ③f(x+3)是奇函数;  ④f(x)的图象关于直线x=2k+1(k∈Z)对称.其中正确命题的个数是


  1. A.
    1
  2. B.
    2
  3. C.
    3
  4. D.
    4

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域是R,对于任意实数m,n,恒有f(m+n)=f(m)•f(n),且当x>0 时,0<f(x)<1.
(Ⅰ)若f(1)=
1
2
,求
f(1)+f(2)
f(1)
的值;
(Ⅱ)求证:f(0)=1,且当x<0时,有f(x)>1;
(Ⅲ)判断f(x)在R上的单调性,并加以证明.

查看答案和解析>>


同步练习册答案