精英家教网 > 高中数学 > 题目详情
设函数f(x)=sin(ωx+
π
3
)(ω>0)
的最小正周期为
3
,则函数f(x)图象的对称轴方程为(  )
A.x=kπ+
π
6
(k∈z)
B.x=kπ-π6(k∈z)
C.x=
3
+
π
18
(k∈z)
D.x=
3
-
π
9
(k∈z)
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=sin(ωx+
π
3
)(ω>0)
的最小正周期为
3
,则函数f(x)图象的对称轴方程为(  )
A、x=kπ+
π
6
(k∈z)
B、x=kπ-π6(k∈z)
C、x=
3
+
π
18
(k∈z)
D、x=
3
-
π
9
(k∈z)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数f(x)=sin(ωx+
π
3
)(ω>0)
的最小正周期为
3
,则函数f(x)图象的对称轴方程为(  )
A.x=kπ+
π
6
(k∈z)
B.x=kπ-π6(k∈z)
C.x=
3
+
π
18
(k∈z)
D.x=
3
-
π
9
(k∈z)

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(ωx+?)(ω>0,-
π
2
<?<
π
2
)
,给出以下四个论断:
①它的图象关于直线x=
π
12
对称;
②它的图象关于点(
π
3
,0)对称;
③它的最小正周期是π;
④在区间[-
π
6
,0
]上是增函数.
以其中两个论断作为条件,余下论断作为结论,一个正确的命题:
条件
3
,结论
A、①②⇒③④
B、③④⇒①②
C、②④⇒①③
D、①③⇒②④

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sinωx+2
3
sin2
ωx
2
(ω>0)的最小正周期为
3

(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若将y=f(x)的图象向左平移
π
2
个单位可得y=g(x)的图象,求不等式g(x)≥2
3
的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(
πx
4
-
π
6
)-2cos2
πx
8
+1

(1)求f(x)的最小正周期;
(2)若y=g(x)与y=f(x)的图象关于x=1对称,求y=g(x)的解析式;
(3)把y=f(x)的图象向右平移m(m>0)个单位后得到y=g(x)的图象,求m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=3sin(ωx+
π
6
)
,(ω>0),x∈(-∞,+∞),且以
π
2
为最小正周期.
(1)求f(0);
(2)求f(x)的解析式;
(3)已知f(
α
4
+
π
12
)=
9
5
,求sinαtanα的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=3sin(ωx+
π
6
)
,(ω>0),x∈(-∞,+∞),且以
π
2
为最小正周期.
(1)求f(0);
(2)求f(x)的解析式;
(3)已知f(
α
4
+
π
12
)=
9
5
,求sinαtanα的值.

查看答案和解析>>

科目:高中数学 来源:2010年全国普通高等学校招生统一考试、文科数学B卷(广东卷) 题型:044

设函数f(x)=3sin(ωx),ω>0,x∈(-∞,+∞),且以为最小正周期.

(1)求f(0);

(2)求f(x)的解析式;

(3)已知,求sinα的值.

查看答案和解析>>

科目:高中数学 来源:云南省武定县第一中学2011届高三8月月考文科数学试题 题型:044

设函数f(x)=3sin(ωx+),ω>0,x∈(-∞,+∞),且以为最小正周期.

(1)求f(0);

(2)求f(x)的解析式;

(3)已知f()=,求sinα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=(sinωx+cosωx)2+2cos2ωx(ω>0)的最小正周期为
3

(Ⅰ)求ω的值;
(Ⅱ)若函数y=g(x)的图象是由y=f(x)的图象向右平移
π
2
个单位长度得到,求y=g(x)的单调增区间.

查看答案和解析>>


同步练习册答案