精英家教网 > 高中数学 > 题目详情
已知函数f (x)是定义在闭区间[-a,a](a>0)上的奇函数,F(x)=f (x)+1,则F(x)最大值与最小值之和为(  )
A.1B.2C.3D.0
相关习题

科目:高中数学 来源: 题型:

8、已知函数f (x)是定义在闭区间[-a,a](a>0)上的奇函数,F(x)=f (x)+1,则F(x)最大值与最小值之和为(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f (x)是定义在闭区间[-a,a](a>0)上的奇函数,F(x)=f (x)+1,则F(x)最大值与最小值之和为(  )
A.1B.2C.3D.0

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖北省黄冈市高一(上)期末数学试卷(解析版) 题型:选择题

已知函数f (x)是定义在闭区间[-a,a](a>0)上的奇函数,F(x)=f (x)+1,则F(x)最大值与最小值之和为( )
A.1
B.2
C.3
D.0

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省无锡市怀仁中学高一(上)期中数学试卷(实验班)(解析版) 题型:选择题

已知函数f (x)是定义在闭区间[-a,a](a>0)上的奇函数,F(x)=f (x)+1,则F(x)最大值与最小值之和为( )
A.1
B.2
C.3
D.0

查看答案和解析>>

科目:高中数学 来源:2009-2010学年湖北省武汉二中高一(上)期末数学试卷(解析版) 题型:选择题

已知函数f (x)是定义在闭区间[-a,a](a>0)上的奇函数,F(x)=f (x)+1,则F(x)最大值与最小值之和为( )
A.1
B.2
C.3
D.0

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知函数f (x)是定义在闭区间[-a,a](a>0)上的奇函数,F(x)=f (x)+1,则F(x)最大值与最小值之和为


  1. A.
    1
  2. B.
    2
  3. C.
    3
  4. D.
    0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=数学公式是定义在R上的奇函数,其值域为[-数学公式].
(1)试求a、b的值;
(2)函数y=g(x)(x∈R)满足:①当x∈[0,3)时,g(x)=f(x);②g(x+3)=g(x)lnm(m≠1).
①求函数g(x)在x∈[3,9)上的解析式;
②若函数g(x)在x∈[0,+∞)上的值域是闭区间,试探求m的取值范围,并说明理由.

查看答案和解析>>

科目:高中数学 来源:2011年江苏省盐城市高考数学二模试卷(解析版) 题型:解答题

已知函数f(x)=是定义在R上的奇函数,其值域为[-].
(1)试求a、b的值;
(2)函数y=g(x)(x∈R)满足:①当x∈[0,3)时,g(x)=f(x);②g(x+3)=g(x)lnm(m≠1).
①求函数g(x)在x∈[3,9)上的解析式;
②若函数g(x)在x∈[0,+∞)上的值域是闭区间,试探求m的取值范围,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=2x-2.
(1)试判断函数F(x)=(x2+1)f (x)-g(x)在[1,+∞)上的单调性;
(2)当0<a<b时,求证:函数f(x)定义在区间[a,b]上的值域的长度大于
2a(b-a)
a2+b2
(闭区间[m,n]的长度定义为n-m).
(3)方程f(x)=
1
ex
-
2
ex
是否存在实数根?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|3x-1|,g(x)=|a•3x-9|(a>0),x∈R,且函数h(x)=
g(x),f(x)≥g(x)
f(x),f(x)<g(x)

(1)当2≤a<9时,设函数h(x)=g(x)所对应的自变量取值区间长度为d(闭区间[m,n]的长度定义为n-m),试求d的表达式并求d的最大值;
(2)是否存在这样的a,使得对任意x≥2,都有h(x)=g(x),若存在,求出a的取值范围;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案