精英家教网 > 高中数学 > 题目详情
a、b是不等于1的正数,θ∈(
2
,2π),若atanθ>btanθ>1,则下列不等式成立的是(  )
A.a>b>1B.a<b<1C.b<a<1D.b>a>1
相关习题

科目:高中数学 来源: 题型:

a、b是不等于1的正数,θ∈(
2
,2π),若atanθ>btanθ>1,则下列不等式成立的是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

a、b是不等于1的正数,θ∈(
2
,2π),若atanθ>btanθ>1,则下列不等式成立的是(  )
A.a>b>1B.a<b<1C.b<a<1D.b>a>1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

a、b是不等于1的正数,θ∈(
2
,2π),若atanθ>btanθ>1,则下列不等式成立的是(  )
A.a>b>1B.a<b<1C.b<a<1D.b>a>1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•bx的图象过点A(4、
14
)和B(5,1).
(1)求函数f(x)的解析式;
(2)记an=log2f(n)、n是正整数,Sn是数列{an}的前n项和,解关于n的不等式anSn≤0;
(3)对于(2)中的an与Sn,整数104是否为数列{anSn}中的项?若是,则求出相应的项数;若不是,则说明理由.

查看答案和解析>>

科目:高中数学 来源:上海 题型:解答题

已知函数f(x)=a•bx的图象过点A(4、
1
4
)和B(5,1).
(1)求函数f(x)的解析式;
(2)记an=log2f(n)、n是正整数,Sn是数列{an}的前n项和,解关于n的不等式anSn≤0;
(3)对于(2)中的an与Sn,整数104是否为数列{anSn}中的项?若是,则求出相应的项数;若不是,则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网请考生在第(1),(2),(3)题中任选一题作答,如果多做,则按所做的第一题记分.
(1)选修4-1:几何证明选讲
如图,在△ABC中,D是AC的中点,E是BD的中点,AE的延长线交BC于F.
(Ⅰ)求
BF
FC
的值;
(Ⅱ)若△BEF的面积为S1,四边形CDEF的面积为S2,求S1:S2的值.
(2)选修4-4:坐标系与参数方程
以直角坐标系的原点O为极点,a=
π
6
轴的正半轴为极轴,且两个坐标系取相等的单位长度.已知直线l经过点P(1,1),倾斜角a=
π
6

( I)写出直线l的参数方程;
( II)设l与圆ρ=2相交于两点A、B,求点P到A、B两点的距离之积.
(3)选修4-5:不等式选讲
已知函数f(x)=|2x+1|+|2x-3|.
(I)求不等式f(x)≤6的解集;
(II)若关于x的不等式f(x)>a恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年福建省莆田八中高三(上)第二次月考数学试卷(理科)(解析版) 题型:解答题

本题有(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分.
(1)选修4-2:矩阵与变换
已知矩阵A=
①求矩阵A的逆矩阵B;
②若直线l经过矩阵B变换后的方程为y=x,求直线l的方程.
(2)选修4-4:坐标系与参数方程
已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中x轴的正半轴重合.圆C的参数方程为(a为参数),点Q极坐标为(2,π).
(Ⅰ)化圆C的参数方程为极坐标方程;
(Ⅱ)若点P是圆C上的任意一点,求P、Q两点距离的最小值.
(3)选修4-5:不等式选讲
(I)关于x的不等式|x-3|+|x-4|<a的解不是空集,求a的取值范围.
(II)设x,y,z∈R,且,求x+y+z的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

本题包括(1)、(2)、(3)、(4)四小题,请选定其中两题,并在答题卡指定区域内答,
若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.
(1)、选修4-1:几何证明选讲
如图,∠PAQ是直角,圆O与AP相切于点T,与AQ相交于两点B,C.求证:BT平分∠OBA
(2)选修4-2:矩阵与变换(本小题满分10分)
若点A(2,2)在矩阵M=
cosα-sinα
sinαcosα
对应变换的作用下得到的点为B(-2,2),求矩阵M的逆矩阵
(3)选修4-2:矩阵与变换(本小题满分10分)
在极坐标系中,A为曲线ρ2+2ρcosθ-3=0上的动点,B为直线ρcosθ+ρsinθ-7=0上的动点,求AB的最小值.
(4)选修4-5:不等式选讲(本小题满分10分)
已知a1,a2…an都是正数,且a1•a2…an=1,求证:(2+a1)(2+a2)…(2+an)≥3n

查看答案和解析>>

科目:高中数学 来源: 题型:

以下四个命题:
①PA、PB是平面α的两条长度相等的斜线段,则它们在平面α内的射影的长度必相等;
②平面α内的两直线l1、l2,若l1、l2均与平面β平行,则α∥β;
③若平面α内有无数个点到平面β的距离相等,则α∥β;
④α、β为两相交平面,且α不垂直于β,α内有一定直线l,则在平面β内有无数条直线与l垂直.
其中正确的命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

以下四个命题:
①PA、PB是平面α的两条长度相等的斜线段,则它们在平面α内的射影的长度必相等;
②平面α内的两直线l1、l2,若l1、l2均与平面β平行,则αβ;
③若平面α内有无数个点到平面β的距离相等,则αβ;
④α、β为两相交平面,且α不垂直于β,α内有一定直线l,则在平面β内有无数条直线与l垂直.
其中正确的命题的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>


同步练习册答案