精英家教网 > 初中数学 > 题目详情
抛物线y=x2-4与x轴的交点坐标为(  )
A.(0,-4)B.(2,0)C.(-2,0)D.(-2,0)或(2,0)
相关习题

科目:初中数学 来源: 题型:

抛物线y=-x2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:
-2 -1   1
 0  4  6  4  0
根据上表判断下列四种说法:①抛物线的对称轴是x=1;②x>1时,y的值随着x的增大而减小:③抛物线有最高点:④抛物线的顶点、与x轴的两个交点三点为顶点的三角形的面积为36.其中正确说法的个数有(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

抛物线y=-x2+bx+c经过直线y=-x+3与坐标轴的两个交点A、B,抛物线与x轴的另一个交点为C,抛物线的顶点为D.
(1)求此抛物线的解析式;
(2)试判断△ABD的形状,并证明你的结论;
(3)在坐标轴上是否存在点P,使得以点P、A、B、D为顶点的四边形是梯形?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

抛物线y=-x2+bx+c经过直线y=-x+3与坐标轴的两个交点A、B,抛物线与x轴的另一个交点为C,抛物线的顶点为D.
(1)求此抛物线的解析式;
(2)试判断△ABD的形状,并证明你的结论;
(3)在坐标轴上是否存在点P,使得以点P、A、B、D为顶点的四边形是梯形?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

抛物线y=数学公式x2-4x+k与x轴交于A、B两点(点B在点A的右侧),与y轴交于点C(0,6),动点P在该抛物线上.
(1)求k的值;
(2)当△POC是以OC为底的等腰三角形时,求点P的横坐标;
(3)如图,当点P在直线BC下方时,记△POC的面积为S1,△PBC的面积为S2.试问S2-S1是否存在最大值?若存在,请求出S2-S1的最大值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

抛物线y=ax2+bx+c与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,且当x=0和x=2时,y的值相等.直线y=3x-7与这条抛物线相交于两点,其中一点的横坐标是4,另一点是这条抛物线的顶点M.
(1)求这条抛物线的解析式;
(2)P为线段BM上一点,过点P向x轴引垂线,垂足为Q.若点P在线段BM上运动(点P不与点B、M重合),设OQ的长为t,四边形PQOC的面积为S.求S与t之间的函数关系式及自变量t的取值范围.
(3)对于二次三项式x2-10x+36,小明同学作出如下结论:无论x取什么实数,它的值都不可能等于11.你是否同意他的说法?说明你的理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

抛物线与x轴交点的横坐标为-2和1,且过点(2,8),它的关系式为(  )
A.y=2x2-2x-4B.y=-2x2+2x-4
C.y=x2+x-2D.y=2x2+2x-4

查看答案和解析>>

科目:初中数学 来源:《26.1-26.2 二次函数》2010年同步测试(解析版) 题型:选择题

抛物线与x轴交点的横坐标为-2和1,且过点(2,8),它的关系式为( )
A.y=2x2-2x-4
B.y=-2x2+2x-4
C.y=x2+x-2
D.y=2x2+2x-4

查看答案和解析>>

科目:初中数学 来源:2011-2012学年北京市丰台三中九年级(上)期末数学试卷(解析版) 题型:解答题

抛物线y=-x2+bx+c经过直线y=-x+3与坐标轴的两个交点A、B,抛物线与x轴的另一个交点为C,抛物线的顶点为D.
(1)求此抛物线的解析式;
(2)试判断△ABD的形状,并证明你的结论;
(3)在坐标轴上是否存在点P,使得以点P、A、B、D为顶点的四边形是梯形?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:2013年福建省泉州市初中学业质量检查数学试卷(解析版) 题型:解答题

抛物线y=x2-4x+k与x轴交于A、B两点(点B在点A的右侧),与y轴交于点C(0,6),动点P在该抛物线上.
(1)求k的值;
(2)当△POC是以OC为底的等腰三角形时,求点P的横坐标;
(3)如图,当点P在直线BC下方时,记△POC的面积为S1,△PBC的面积为S2.试问S2-S1是否存在最大值?若存在,请求出S2-S1的最大值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2013年初中毕业升学考试(广西崇左卷)数学(解析版) 题型:解答题

抛物线y=﹣x2平移后的位置如图所示,点A,B坐标分别为(﹣1,0)、(3,0),设平移后的抛物线与y轴交于点C,其顶点为D.

(1)求平移后的抛物线的解析式和点D的坐标;

(2)∠ACB和∠ABD是否相等?请证明你的结论;

(3)点P在平移后的抛物线的对称轴上,且△CDP与△ABC相似,求点P的坐标.

 

查看答案和解析>>


同步练习册答案