精英家教网 > 高中数学 > 题目详情
设A=(1,2,3,…,10),若方程x2-bx-c=0,满足b、c属于A,且方程至少有一根a属于A,称方程为漂亮方程,则“漂亮方程”的总个数为(  )
A.8个B.10个C.12个D.14个
相关习题

科目:高中数学 来源: 题型:

10、设A=(1,2,3,…,10),若方程x2-bx-c=0,满足b、c属于A,且方程至少有一根a属于A,称方程为漂亮方程,则“漂亮方程”的总个数为(  )

查看答案和解析>>

科目:高中数学 来源:衢州模拟 题型:单选题

设A=(1,2,3,…,10),若方程x2-bx-c=0,满足b、c属于A,且方程至少有一根a属于A,称方程为漂亮方程,则“漂亮方程”的总个数为(  )
A.8个B.10个C.12个D.14个

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江西省抚州市广昌一中、崇仁一中高一(上)期中数学试卷(解析版) 题型:选择题

设A=(1,2,3,…,10),若方程x2-bx-c=0,满足b、c属于A,且方程至少有一根a属于A,称方程为漂亮方程,则“漂亮方程”的总个数为( )
A.8个
B.10个
C.12个
D.14个

查看答案和解析>>

科目:高中数学 来源:2009-2010学年浙江省杭州市学军中学高一(上)期末数学试卷(解析版) 题型:选择题

设A=(1,2,3,…,10),若方程x2-bx-c=0,满足b、c属于A,且方程至少有一根a属于A,称方程为漂亮方程,则“漂亮方程”的总个数为( )
A.8个
B.10个
C.12个
D.14个

查看答案和解析>>

科目:高中数学 来源:2010年高考数学模拟组合试卷(3)(解析版) 题型:选择题

设A=(1,2,3,…,10),若方程x2-bx-c=0,满足b、c属于A,且方程至少有一根a属于A,称方程为漂亮方程,则“漂亮方程”的总个数为( )
A.8个
B.10个
C.12个
D.14个

查看答案和解析>>

科目:高中数学 来源:2010年浙江省衢州市高三4月质量检测数学试卷(理科)(解析版) 题型:选择题

设A=(1,2,3,…,10),若方程x2-bx-c=0,满足b、c属于A,且方程至少有一根a属于A,称方程为漂亮方程,则“漂亮方程”的总个数为( )
A.8个
B.10个
C.12个
D.14个

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

设A=(1,2,3,…,10),若方程x2-bx-c=0,满足b、c属于A,且方程至少有一根a属于A,称方程为漂亮方程,则“漂亮方程”的总个数为


  1. A.
    8个
  2. B.
    10个
  3. C.
    12个
  4. D.
    14个

查看答案和解析>>

科目:高中数学 来源:2013届山西省晋商四校高二下学期联考理科数学试卷(解析版) 题型:解答题

设函数

(1)当时,求曲线处的切线方程;

(2)当时,求的极大值和极小值;

(3)若函数在区间上是增函数,求实数的取值范围.

【解析】(1)中,先利用,表示出点的斜率值这样可以得到切线方程。(2)中,当,再令,利用导数的正负确定单调性,进而得到极值。(3)中,利用函数在给定区间递增,说明了在区间导数恒大于等于零,分离参数求解范围的思想。

解:(1)当……2分

   

为所求切线方程。………………4分

(2)当

………………6分

递减,在(3,+)递增

的极大值为…………8分

(3)

①若上单调递增。∴满足要求。…10分

②若

恒成立,

恒成立,即a>0……………11分

时,不合题意。综上所述,实数的取值范围是

 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆Mx2+y2-2tx-6t-10=0,椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0),若椭圆C与x轴的交点A(5,y0)到其右准线的距离为
10
3
;点A在圆M外,且圆M上的点和点A的最大距离与最小距离之差为2.
(1)求圆M的方程和椭圆C的方程;
(2)设点P为椭圆C上任意一点,自点P向圆M引切线,切点分别为A、B,请试着去求
P
A•
P
B
的取值范围;
(3)设直线系M:xcosθ+(y-3)sinθ=1(θ∈R);求证:直线系M中的任意一条直线l恒与定圆相切,并直接写出三边都在直线系M中的直线上的所有可能的等腰直角三角形的面积.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省南通市海门中学高三(上)开学检测数学试卷(解析版) 题型:解答题

【选做题】在A,B,C,D四小题中只能选做2题,每题10分,共计20分.请在答题卡指定区域内作答,解答时写出文字说明、证明过程或演算步骤.
21-1.(选修4-2:矩阵与变换)
设M是把坐标平面上的点的横坐标伸长到2倍,纵坐标伸长到3倍的伸压变换.
(1)求矩阵M的特征值及相应的特征向量;
(2)求逆矩阵M-1以及椭圆+=1在M-1的作用下的新曲线的方程.
21-2.(选修4-4:参数方程)
以直角坐标系的原点O为极点,x轴的正半轴为极轴.已知点P的直角坐标为(1,-5),点M的极坐标为(4,),若直线l过点P,且倾斜角为 ,圆C以M为圆心、4为半径.
(1)求直线l关于t的参数方程和圆C的极坐标方程;
(2)试判定直线l和圆C的位置关系.

查看答案和解析>>


同步练习册答案