精英家教网 > 高中数学 > 题目详情
两圆(x+1)2+y2=4与(x-a)2+y2=1相交,则实数a的取值范围是(  )
A.a∈R且a≠1B.-4<a<2
C.0<a<2或-4<a<-2D.2<a<4或-1<a<0
相关习题

科目:高中数学 来源: 题型:

两圆(x+1)2+y2=4与(x-a)2+y2=1相交,则实数a的取值范围是(  )
A、a∈R且a≠1B、-4<a<2C、0<a<2或-4<a<-2D、2<a<4或-1<a<0

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

两圆(x+1)2+y2=4与(x-a)2+y2=1相交,则实数a的取值范围是(  )
A.a∈R且a≠1B.-4<a<2
C.0<a<2或-4<a<-2D.2<a<4或-1<a<0

查看答案和解析>>

科目:高中数学 来源:0103 月考题 题型:单选题

圆(x-1)2+y2=1被直线x-y=0分成两段圆弧,则较短弧长与较长弧长之比为

[     ]

A.1∶2
B.1∶3
C.1∶4
D.1∶5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆(x+4)2+y2=25的圆心为M1,圆(x-4)2+y2=1的圆心为M2,一动圆与这两个圆都外切.
(1)求动圆圆心P的轨迹方程;
(2)若过点M2的直线与(1)中所求轨迹有两个交点A、B,求|AM1|•|BM1|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆(x+4)2+y2=25的圆心为M1,圆(x-4)2+y2=1的圆心为M2,一动圆与这两个圆都外切.
(1)求动圆圆心P的轨迹方程;
(2)若过点M2的直线与(1)中所求轨迹有两个交点A、B,求|AM1|•|BM1|的取值范围.

查看答案和解析>>

科目:高中数学 来源:高考数学一轮复习必备(第69课时):第八章 圆锥曲线方程-圆锥曲线的应用(2)(解析版) 题型:解答题

已知圆(x+4)2+y2=25的圆心为M1,圆(x-4)2+y2=1的圆心为M2,一动圆与这两个圆都外切.
(1)求动圆圆心P的轨迹方程;
(2)若过点M2的直线与(1)中所求轨迹有两个交点A、B,求|AM1|•|BM1|的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011年云南省高三数学一轮复习单元测试07:直线与圆(解析版) 题型:解答题

已知圆(x+4)2+y2=25的圆心为M1,圆(x-4)2+y2=1的圆心为M2,一动圆与这两个圆都外切.
(1)求动圆圆心P的轨迹方程;
(2)若过点M2的直线与(1)中所求轨迹有两个交点A、B,求|AM1|•|BM1|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知圆C:x2+y2+Dx+Ey+3=0,圆C关于直线x+y-1=0对称,圆心在第二象限,半径为
2
.求圆C的方程;
(2)已知圆C:x2+y2=4.直线l过点P(1,2),且与圆C交于A、B两点,若|AB|=2
3
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知动圆P与两圆(x+2)2+y2=2,(x-2)2+y2=2中的一个内切,另一个外切.
(1)求动圆圆心P的轨迹E的方程;
(2)过(2,0)作直线l交曲线E于A、B两点,使得|AB|=2
2
,求直线l的方程;
(3)若从动点P向圆C:x2+(y-4)2=1作两条切线,切点为A、B,设|PC|=t,试用t表示
PA
PB
,并求
PA
PB
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)求过直线x+y+4=0与x-y+2=0的交点,且平行于直线 x-2y=0的直线方程.
(2)设直线4x+3y+1=0和圆x2+y2-2x-3=0相交于点A、B,求弦AB的长及其垂直平分线的方程.
(3)过点P(3,0)有一条直线l,它夹在两条直线l1:2x-y-2=0与l2:x+y+3=0之间的线段恰被P点平分,求直线l的方程.

查看答案和解析>>


同步练习册答案