精英家教网 > 高中数学 > 题目详情
若直线过点P(-3,-
3
2
),且被圆x2+y2=25截得的弦长是8,则这条直线的方程是(  )
A.3x+4y+15=0B.x=-3或y=-
3
2
C.x=-3D.x=-3或3x+4y+15=0
相关习题

科目:高中数学 来源: 题型:

若直线过点P(-3,-
3
2
),且被圆x2+y2=25截得的弦长是8,则这条直线的方程是(  )
A、3x+4y+15=0
B、x=-3或y=-
3
2
C、x=-3
D、x=-3或3x+4y+15=0

查看答案和解析>>

科目:高中数学 来源:孝感模拟 题型:单选题

若直线过点P(-3,-
3
2
),且被圆x2+y2=25截得的弦长是8,则这条直线的方程是(  )
A.3x+4y+15=0B.x=-3或y=-
3
2
C.x=-3D.x=-3或3x+4y+15=0

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•山东)椭圆C:
x2
a2
+
y2
b2
=1(a>0,b>0)
的左右焦点分别是F1,F2,离心率为
3
2
,过F1且垂直于x轴的直线被椭圆C截得的线段长为1.
(1)求椭圆C的方程;
(2)点P是椭圆C上除长轴端点外的任一点,连接PF1,PF2,设∠F1PF2的角平分线PM交C的长轴于点M(m,0),求m的取值范围;
(3)在(2)的条件下,过点P作斜率为k的直线l,使得l与椭圆C有且只有一个公共点,设直线PF1,PF2的斜率分别为k1,k2,若k≠0,试证明
1
kk1
+
1
kk2
为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知椭圆
x2
a2
+
y2
b2
=1(a>b>c>0,a2=b2+c2)的左、右焦点分别为F1,F2,若以F2为圆心,b-c为半径作圆F2,过椭圆上一点P作此圆的切线,切点为T,且|PT|的最小值不小于
3
2
(a-c).
(1)证明:椭圆上的点到点F2的最短距离为a-c;
(2)求椭圆的离心率e的取值范围;
(3)设椭圆的短半轴长为1,圆F2与x轴的右交点为Q,过点Q作斜率为k(k>0)的直线l与椭圆相交于A、B两点,若OA⊥OB,求直线l被圆F2截得的弦长s的最大值.

查看答案和解析>>


同步练习册答案