精英家教网 > 高中数学 > 题目详情
已知圆C1的方程为f(x,y)=0,且P(x0,y0)在圆C1外,圆C2的方程为f(x,y)=f(x0,y0),则C1与圆
C2一定(  )
A.相离B.相切C.同心圆D.相交
相关习题

科目:高中数学 来源: 题型:

8、已知圆C1的方程为f(x,y)=0,且P(x0,y0)在圆C1外,圆C2的方程为f(x,y)=f(x0,y0),则C1与圆C2一定
同心圆

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C1的方程为f(x,y)=0,且P(x0,y0)在圆C1外,圆C2的方程为f(x,y)=f(x0,y0),则C1与圆
C2一定(  )
A、相离B、相切C、同心圆D、相交

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知圆C1的方程为f(x,y)=0,且P(x0,y0)在圆C1外,圆C2的方程为f(x,y)=f(x0,y0),则C1与圆
C2一定(  )
A.相离B.相切C.同心圆D.相交

查看答案和解析>>

科目:高中数学 来源:2010年高考数学专项复习:圆的方程(2)(解析版) 题型:解答题

已知圆C1的方程为f(x,y)=0,且P(x,y)在圆C1外,圆C2的方程为f(x,y)=f(x,y),则C1与圆C2一定    

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知圆C1的方程为f(x,y)=0,且P(x0,y0)在圆C1外,圆C2的方程为f(x,y)=f(x0,y0),则C1与圆C2一定 ________.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知圆C1的方程为f(x,y)=0,且P(x0,y0)在圆C1外,圆C2的方程为f(x,y)=f(x0,y0),则C1与圆
C2一定


  1. A.
    相离
  2. B.
    相切
  3. C.
    同心圆
  4. D.
    相交

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C1:y2=2px(p>0)的焦点F以及椭圆C2
y2
a2
+
y2
b2
=1,(a>b>0)
的上、下焦点及左、右顶点均在圆O:x2+y2=1上.
(Ⅰ)求抛物线C1和椭圆C2的标准方程;
(Ⅱ)过点F的直线交抛物线C1于A、B两不同点,交y轴于点N,已知
NA
=λ1
AF
, 
NB
 =λ2
BF
,求证:λ12为定值.
(Ⅲ)直线l交椭圆C2于P、Q两不同点,P、Q在x轴的射影分别为P'、Q',
OP
OQ
+
OP′
OQ′
 +1=0
,若点S满足:
OS
OP
 +
OQ
,证明:点S在椭圆C2上.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点(x,y)在椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的第一象限上运动.
(Ⅰ)求点(
y
x
,xy)
的轨迹C1的方程;
(Ⅱ)若把轨迹C1的方程表达式记为y=f(x),且在(0,
3
3
)
内y=f(x)有最大值,试求椭圆C的离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线C1:y2=2px(p>0)的焦点F以及椭圆C2数学公式的上、下焦点及左、右顶点均在圆O:x2+y2=1上.
(Ⅰ)求抛物线C1和椭圆C2的标准方程;
(Ⅱ)过点F的直线交抛物线C1于A、B两不同点,交y轴于点N,已知数学公式,求证:λ12为定值.
(Ⅲ)直线l交椭圆C2于P、Q两不同点,P、Q在x轴的射影分别为P'、Q',数学公式,若点S满足:数学公式,证明:点S在椭圆C2上.

查看答案和解析>>

科目:高中数学 来源:山东省模拟题 题型:解答题

已知抛物线C1:y2=2px(p>0)的焦点F以及椭圆C2的上、下焦点及左、右顶点均在圆O:x2+y2=1上,
(Ⅰ)求抛物线C1和椭圆C2的标准方程;
(Ⅱ)过点F的直线交抛物线C1于A、B两不同点,交y轴于点N,已知,求证:λ12为定值;
(Ⅲ)直线l交椭圆C2于P、Q两不同点,P、Q在x轴的射影分别为P′、Q′,,若点S满足:,证明:点S在椭圆C2上。

查看答案和解析>>


同步练习册答案