精英家教网 > 高中数学 > 题目详情
已知抛物线C1:y2=2px(p>0)的焦点F以及椭圆C2
y2
a2
+
y2
b2
=1,(a>b>0)
的上、下焦点及左、右顶点均在圆O:x2+y2=1上.
(Ⅰ)求抛物线C1和椭圆C2的标准方程;
(Ⅱ)过点F的直线交抛物线C1于A、B两不同点,交y轴于点N,已知
NA
=λ1
AF
, 
NB
 =λ2
BF
,求证:λ12为定值.
(Ⅲ)直线l交椭圆C2于P、Q两不同点,P、Q在x轴的射影分别为P'、Q',
OP
OQ
+
OP′
OQ′
 +1=0
,若点S满足:
OS
OP
 +
OQ
,证明:点S在椭圆C2上.
分析:(Ⅰ)由C1:y2=2px(p>0)焦点F(
p
2
,0)在圆O:x2+y2=1上,可求p的值;同理由椭圆的上、下焦点(0,c),(0,-c)及左、右顶点(-b,0),(b,0)均在圆O:x2+y2=1上可解得椭圆C2的方程;
(Ⅱ)设直线AB的方程与抛物线联立,消元,利用韦达定理,结合
NA
=λ1
AF
, 
NB
 =λ2
BF
,从而可求λ1、λ2的值,即可得证;
(Ⅲ)设P,Q的坐标,利用
OS
OP
 +
OQ
,确定S的坐标,利用
OP
OQ
+
OP′
OQ′
 +1=0
及P,Q在椭圆上,即可证得结论.
解答:(Ⅰ)解:由C1:y2=2px(p>0)焦点F(
p
2
,0)在圆O:x2+y2=1上得:
p2
4
=1
,∴p=2
∴抛物线C1:y2=4x…(2分)
同理由椭圆C2
x2
a2
+
y2
b2
=1,(a>b>0)
的上、下焦点(0,c),(0,-c)及左、右顶点(-b,0),(b,0)均在圆O:x2+y2=1上可解得:b=c=1,a=
2

∴椭圆C2x2+
y2
2
=1

(Ⅱ)证明:设直线AB的方程为y=k(x-1),A(x1,y1),B(x2,y2),则N(0,-k)
直线与抛物线联立,消元可得k2x2-(2k2+4)x+k2=0
∴x1+x2=
2k2+4
k2
,x1x2=1
NA
=λ1
AF
, 
NB
 =λ2
BF

∴λ1(1-x1)=x1,λ2(1-x2)=x2
λ1=
x1
1-x1
λ2=
x2
1-x2

∴λ12=
(x1+x2)-2x1x2
1-(x1+x2)+x1x2
=-1
为定值;
(Ⅲ)证明:设P(x3,y3),Q(x4,y4),则P′(x3,0),Q′(x4,0),
OS
OP
 +
OQ
,∴S(x3+x4,y3+y4
OP
OQ
+
OP′
OQ′
 +1=0

∴2x3x4+y3y4=-1①
∵P,Q在椭圆上,∴
x
2
3
+
y
2
3
2
=1
②,
x
2
4
+
y
2
4
2
=1

由①+②+③得(x3+x42+
(y3+y4)2
2
=1
∴点S在椭圆C2
点评:本题考查抛物线与椭圆的方程,考查直线与椭圆的位置关系,考查向量知识的运用,解题的关键是联立方程,利用向量知识求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线C1:y2=4mx(m>0)的焦点为F2,其准线与x轴交于点F1,以F1,F2为焦点,离心率为
12
的椭圆C2与抛物线C1在x轴上方的一个交点为P.
(1)当m=1时,求椭圆的标准方程及其右准线的方程;
(2)用m表示P点的坐标;
(3)是否存在实数m,使得△PF1F2的边长是连续的自然数,若存在,求出这样的实数m;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C1:y2=x+7,圆C2:x2+y2=5.
(1)求证抛物线与圆没有公共点;
(2)过点P(a,0)作与x轴不垂直的直线l交C1,C2依次为A、B、C、D,若|AB|=|CD|,求实数a的变化范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•河北模拟)已知抛物线C1:y2=2px和圆C2(x-
p
2
)
2
+y2=
p2
4
,其中p>0,直线l经过C1的焦点,依次交C1,C2于A,B,C,D四点,则
AB
CD
的值为
p2
4
p2
4

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知抛物线C1:y2=4x,圆C2:(x-1)2+y2=1,过抛物线焦点F的直线l交C1于A,D两点(点A在x轴上方),直线l交C2于B,C两点(点B在x轴上方).
(Ⅰ)求|AB|•|CD|的值;
(Ⅱ)设直线OA、OB、OC、OD的斜率分别为m、n、p、q,且满足m+n+p+q=3
2
,并且|AB|,|BC|,|CD|成等差数列,求出所有满足条件的直线l的方程.

查看答案和解析>>

同步练习册答案