精英家教网 > 高中数学 > 题目详情
设f(x)是定义在R上的一个增函数,F(x)=f(x)-f(-x),那么F(x)为(  )
A.增函数且是奇函数B.增函数且是偶函数
C.减函数且是奇函数D.减函数且是偶函数
相关习题

科目:高中数学 来源: 题型:

14、设f(x)是定义在R上的一个增函数,F(x)=f(x)-f(-x),那么F(x)为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

设f(x)是定义在R上的一个增函数,F(x)=f(x)-f(-x),那么F(x)为


  1. A.
    增函数且是奇函数
  2. B.
    增函数且是偶函数
  3. C.
    减函数且是奇函数
  4. D.
    减函数且是偶函数

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设f(x)是定义在R上的一个增函数,F(x)=f(x)-f(-x),那么F(x)为(  )
A.增函数且是奇函数B.增函数且是偶函数
C.减函数且是奇函数D.减函数且是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在[0,1]上的函数,若存在x*∈(0,1),使得f(x)在[0,x]上单调递增,在[x,1]单调递减,则称f(x)为[0,1]上的单峰函数,x为峰点,包含峰点的区间为含峰区间.
对任意的[0,1]上的单峰函数f(x),下面研究缩短其含峰区间长度的方法.
(Ⅰ)证明:对任意的x1,x2∈(0,1),x1<x2,若f(x1)≥f(x2),则(0,x2)为含峰区间;若f(x1)≤f(x2),则(x1,1)为含峰区间;
(Ⅱ)对给定的r(0<r<0.5),证明:存在x1,x2∈(0,1),满足x2-x1≥2r,使得由(Ⅰ)确定的含峰区间的长度不大于0.5+r;
(Ⅲ)选取x1,x2∈(0,1),x1<x2由(Ⅰ)可确定含峰区间为(0,x2)或(x1,1),在所得的含峰区间内选取x3,由x3与x1或x3与x2类似地可确定是一个新的含峰区间.在第一次确定的含峰区间为(0,x2)的情况下,试确定x1,x2,x3的值,满足两两之差的绝对值不小于0.02且使得新的含峰区间的长度缩短到0.34.
(区间长度等于区间的右端点与左端点之差).

查看答案和解析>>

科目:高中数学 来源:北京 题型:解答题

设f(x)是定义在[0,1]上的函数,若存在x*∈(0,1),使得f(x)在[0,x]上单调递增,在[x,1]单调递减,则称f(x)为[0,1]上的单峰函数,x为峰点,包含峰点的区间为含峰区间.
对任意的[0,1]上的单峰函数f(x),下面研究缩短其含峰区间长度的方法.
(Ⅰ)证明:对任意的x1,x2∈(0,1),x1<x2,若f(x1)≥f(x2),则(0,x2)为含峰区间;若f(x1)≤f(x2),则(x1,1)为含峰区间;
(Ⅱ)对给定的r(0<r<0.5),证明:存在x1,x2∈(0,1),满足x2-x1≥2r,使得由(Ⅰ)确定的含峰区间的长度不大于0.5+r;
(Ⅲ)选取x1,x2∈(0,1),x1<x2由(Ⅰ)可确定含峰区间为(0,x2)或(x1,1),在所得的含峰区间内选取x3,由x3与x1或x3与x2类似地可确定是一个新的含峰区间.在第一次确定的含峰区间为(0,x2)的情况下,试确定x1,x2,x3的值,满足两两之差的绝对值不小于0.02且使得新的含峰区间的长度缩短到0.34.
(区间长度等于区间的右端点与左端点之差).

查看答案和解析>>

科目:高中数学 来源:2012-2013学年四川省成都市石室中学高一(上)1月月考数学试卷(必修1+必修4)(解析版) 题型:解答题

设f(x)是定义在[0,1]上的函数,若存在x*∈(0,1),使得f(x)在[0,x]上单调递增,在[x,1]单调递减,则称f(x)为[0,1]上的单峰函数,x为峰点,包含峰点的区间为含峰区间.
对任意的[0,1]上的单峰函数f(x),下面研究缩短其含峰区间长度的方法.
(Ⅰ)证明:对任意的x1,x2∈(0,1),x1<x2,若f(x1)≥f(x2),则(0,x2)为含峰区间;若f(x1)≤f(x2),则(x1,1)为含峰区间;
(Ⅱ)对给定的r(0<r<0.5),证明:存在x1,x2∈(0,1),满足x2-x1≥2r,使得由(Ⅰ)确定的含峰区间的长度不大于0.5+r;
(Ⅲ)选取x1,x2∈(0,1),x1<x2由(Ⅰ)可确定含峰区间为(0,x2)或(x1,1),在所得的含峰区间内选取x3,由x3与x1或x3与x2类似地可确定是一个新的含峰区间.在第一次确定的含峰区间为(0,x2)的情况下,试确定x1,x2,x3的值,满足两两之差的绝对值不小于0.02且使得新的含峰区间的长度缩短到0.34.
(区间长度等于区间的右端点与左端点之差).

查看答案和解析>>

科目:高中数学 来源:2006-2007学年广东省深圳市宝安中学、翠园中学、外国语学校高三(上)联考数学试卷(理科)(解析版) 题型:解答题

设f(x)是定义在[0,1]上的函数,若存在x*∈(0,1),使得f(x)在[0,x]上单调递增,在[x,1]单调递减,则称f(x)为[0,1]上的单峰函数,x为峰点,包含峰点的区间为含峰区间.
对任意的[0,1]上的单峰函数f(x),下面研究缩短其含峰区间长度的方法.
(Ⅰ)证明:对任意的x1,x2∈(0,1),x1<x2,若f(x1)≥f(x2),则(0,x2)为含峰区间;若f(x1)≤f(x2),则(x1,1)为含峰区间;
(Ⅱ)对给定的r(0<r<0.5),证明:存在x1,x2∈(0,1),满足x2-x1≥2r,使得由(Ⅰ)确定的含峰区间的长度不大于0.5+r;
(Ⅲ)选取x1,x2∈(0,1),x1<x2由(Ⅰ)可确定含峰区间为(0,x2)或(x1,1),在所得的含峰区间内选取x3,由x3与x1或x3与x2类似地可确定是一个新的含峰区间.在第一次确定的含峰区间为(0,x2)的情况下,试确定x1,x2,x3的值,满足两两之差的绝对值不小于0.02且使得新的含峰区间的长度缩短到0.34.
(区间长度等于区间的右端点与左端点之差).

查看答案和解析>>

科目:高中数学 来源:2009-2010学年山东省济南市英雄山中学高一(上)期中数学试卷(必修1)(解析版) 题型:解答题

设f(x)是定义在[0,1]上的函数,若存在x*∈(0,1),使得f(x)在[0,x]上单调递增,在[x,1]单调递减,则称f(x)为[0,1]上的单峰函数,x为峰点,包含峰点的区间为含峰区间.
对任意的[0,1]上的单峰函数f(x),下面研究缩短其含峰区间长度的方法.
(Ⅰ)证明:对任意的x1,x2∈(0,1),x1<x2,若f(x1)≥f(x2),则(0,x2)为含峰区间;若f(x1)≤f(x2),则(x1,1)为含峰区间;
(Ⅱ)对给定的r(0<r<0.5),证明:存在x1,x2∈(0,1),满足x2-x1≥2r,使得由(Ⅰ)确定的含峰区间的长度不大于0.5+r;
(Ⅲ)选取x1,x2∈(0,1),x1<x2由(Ⅰ)可确定含峰区间为(0,x2)或(x1,1),在所得的含峰区间内选取x3,由x3与x1或x3与x2类似地可确定是一个新的含峰区间.在第一次确定的含峰区间为(0,x2)的情况下,试确定x1,x2,x3的值,满足两两之差的绝对值不小于0.02且使得新的含峰区间的长度缩短到0.34.
(区间长度等于区间的右端点与左端点之差).

查看答案和解析>>

科目:高中数学 来源:2005年北京市高考数学试卷(理科)(解析版) 题型:解答题

设f(x)是定义在[0,1]上的函数,若存在x*∈(0,1),使得f(x)在[0,x]上单调递增,在[x,1]单调递减,则称f(x)为[0,1]上的单峰函数,x为峰点,包含峰点的区间为含峰区间.
对任意的[0,1]上的单峰函数f(x),下面研究缩短其含峰区间长度的方法.
(Ⅰ)证明:对任意的x1,x2∈(0,1),x1<x2,若f(x1)≥f(x2),则(0,x2)为含峰区间;若f(x1)≤f(x2),则(x1,1)为含峰区间;
(Ⅱ)对给定的r(0<r<0.5),证明:存在x1,x2∈(0,1),满足x2-x1≥2r,使得由(Ⅰ)确定的含峰区间的长度不大于0.5+r;
(Ⅲ)选取x1,x2∈(0,1),x1<x2由(Ⅰ)可确定含峰区间为(0,x2)或(x1,1),在所得的含峰区间内选取x3,由x3与x1或x3与x2类似地可确定是一个新的含峰区间.在第一次确定的含峰区间为(0,x2)的情况下,试确定x1,x2,x3的值,满足两两之差的绝对值不小于0.02且使得新的含峰区间的长度缩短到0.34.
(区间长度等于区间的右端点与左端点之差).

查看答案和解析>>

科目:高中数学 来源:安徽省安庆市示范高中09-10学年高一五校协作期中考试 题型:解答题

 设fx)是定义在[0,1]上的函数,若存在x*∈(0,1),使得fx)在[0, x*]上单调递增,在[x*,1]上单调递减,则称fx)为[0,1]上的单峰函数,x*为峰点,包含峰点的区间为含峰区间.对任意的[0,l]上的单峰函数fx),下面研究缩短其含峰区间长度的方法.

   (1)证明:对任意的x1x2∈(0,1),x1x2,若fx1)≥fx2),则(0,x2)为含峰区间;若fx1)≤fx2),则(x*,1)为含峰区间; 

   (2)对给定的r(0<r<0.5=,证明:存在x1x2∈(0,1),满足x2x1≥2r,使得由

       (I)所确定的含峰区间的长度不大于0.5+r; 

   (3)选取x1x2∈(0,1),x1x2,由(I)可确定含峰区间为(0,x2)或(x1,1),在所得的含峰区间内选取x3,由x3x1x3x2类似地可确定一个新的含峰区间.在第一次确定的含峰区间为(0,x2)的情况下,试确定x1x2x3的值,满足两两之差的绝对值不小于0.02,且使得新的含峰区间的长度缩短到0.34.(区间长度等于区间的右端点与左端点之差)

 

 

 

 

 

 

 

 

查看答案和解析>>


同步练习册答案