精英家教网 > 初中数学 > 题目详情
已知对于整式A=(x-3)(x-1),B=(x+1)(x-5),如果其中x取值相同时,整式A与B的关系为(  )
A.A=BB.A>BC.A<BD.不确定
相关习题

科目:初中数学 来源: 题型:

已知关于x的不等式组
3x-a≥0
|x|<
b
2
的整数解有且仅有4个:-1,0,1,2,那么适合这个不等式组的所有可能的整数对(a,b)的个数有(  )
A、1B、2C、4D、6

查看答案和解析>>

科目:初中数学 来源:北京中考真题 题型:解答题

已知:抛物线与x轴有两个不同的交点。
(1)求k的取值范围;
(2)当k为整数,且关于x的方程3x=kx-1的解是负数时,求抛物线的解析式;
(3)在(2)的条件下,若在抛物线和x轴所围成的封闭图形内画出一个最大的正方形,使得正方形的一边在x轴上,其对边的两个端点在抛物线上,试求出这个最大正方形的边长。

查看答案和解析>>

科目:初中数学 来源: 题型:

8、已知对于整式A=(x-3)(x-1),B=(x+1)(x-5),如果其中x取值相同时,整式A与B的关系为(  )

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知对于整式A=(x-3)(x-1),B=(x+1)(x-5),如果其中x取值相同时,整式A与B的关系为(  )
A.A=BB.A>BC.A<BD.不确定

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

已知对于整式A=(x-3)(x-1),B=(x+1)(x-5),如果其中x取值相同时,整式A与B的关系为


  1. A.
    A=B
  2. B.
    A>B
  3. C.
    A<B
  4. D.
    不确定

查看答案和解析>>

科目:初中数学 来源: 题型:

(湖北卷)(本小题满分14分)

       已知不等式为大于2的整数,表示不超过的最大整数. 设数列的各项为正,且满足

   (Ⅰ)证明

(Ⅱ)猜测数列是否有极限?如果有,写出极限的值(不必证明);

(Ⅲ)试确定一个正整数N,使得当时,对任意b>0,都有

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•济宁)人教版教科书对分式方程验根的归纳如下:
“解分式方程时,去分母后所得整式方程的解有可能使原分式方程中的分母为0,因此应如下检验:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解.”
请你根据对这段话的理解,解决下面问题:
已知关于x的方程
m-1
x-1
-
x
x-1
=0无解,方程x2+kx+6=0的一个根是m.
(1)求m和k的值;
(2)求方程x2+kx+6=0的另一个根.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•海南)如图,已知抛物线y=﹣x2+bx+9﹣b2(b为常数)经过坐标原点O,且与x轴交于另一点E.其顶点M在第一象限.
(1)求该抛物线所对应的函数关系式;
(2)设点A是该抛物线上位于x轴上方,且在其对称轴左侧的一个动点;过点A作x轴的平行线交该抛物线于另一点D,再作AB⊥x轴于点B.DE⊥x轴于点C.
①当线段AB、BC的长都是整数个单位长度时,求矩形ABCD的周长;
②求矩形ABCD的周长的最大值,并写出此时点A的坐标;
③当矩形ABCD的周长取得最大值时,它的面积是否也同时取得最大值?请判断井说明理由.

查看答案和解析>>

科目:初中数学 来源:2011年初中毕业升学考试(宁夏卷)数学解析版 题型:解答题

(2011•海南)如图,已知抛物线y=﹣x2+bx+9﹣b2(b为常数)经过坐标原点O,且与x轴交于另一点E.其顶点M在第一象限.
(1)求该抛物线所对应的函数关系式;
(2)设点A是该抛物线上位于x轴上方,且在其对称轴左侧的一个动点;过点A作x轴的平行线交该抛物线于另一点D,再作AB⊥x轴于点B.DE⊥x轴于点C.
①当线段AB、BC的长都是整数个单位长度时,求矩形ABCD的周长;
②求矩形ABCD的周长的最大值,并写出此时点A的坐标;
③当矩形ABCD的周长取得最大值时,它的面积是否也同时取得最大值?请判断井说明理由.

查看答案和解析>>

科目:初中数学 来源:2004年全国中考数学试题汇编《二次函数》(06)(解析版) 题型:解答题

(2004•四川)已知抛物线y=ax2+bx+c(a≠0)与x轴交于不同的两点A和B(4,0),与y轴交于点C(0,8),其对称轴为x=1.
(1)求此抛物线的解析式;
(2)过A、B、C三点作⊙O′与y轴的负半轴交于点D,求经过原点O且与直线AD垂直(垂足为E)的直线OE的方程;
(3)设⊙O′与抛物线的另一个交点为P,直线OE与直线BC的交点为Q,直线x=m与抛物线的交点为R,直线x=m与直线OE的交点为S.是否存在整数m,使得以点P、Q、R、S为顶点的四边形为平行四边形?若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案