精英家教网 > 高中数学 > 题目详情
已知二次函数f(x)=ax2-(a+2)x+1(a∈Z),且函数f(x)在区间(-2,-1)内的图象与x轴恰有一个交点,则不等式f(x)>1的解集为(  )
A.(-∞,-1)∪(0,+∞)B.(-∞,0)∪(1,+∞)C.(-1,0)D.(0,1)
相关习题

科目:高中数学 来源:2012-2013学年重庆八中高一(下)期中数学试卷(解析版) 题型:选择题

已知二次函数f(x)=ax2-(a+2)x+1(a∈Z),且函数f(x)在区间(-2,-1)内的图象与x轴恰有一个交点,则不等式f(x)>1的解集为( )
A.(-∞,-1)∪(0,+∞)
B.(-∞,0)∪(1,+∞)
C.(-1,0)
D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2-(2a+2)x+4(a>0)
(1)若对于任意实数x∈R,f(x)≥0恒成立,求a的值;       
(2)解关于x的不等式f(x)≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数f(x)=ax2-(2a+2)x+4(a>0)
(1)若对于任意实数x∈R,f(x)≥0恒成立,求a的值;   
(2)解关于x的不等式f(x)≥0.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知二次函数f(x)=ax2-(2a+2)x+4(a>0)
(1)若对于任意实数x∈R,f(x)≥0恒成立,求a的值;       
(2)解关于x的不等式f(x)≥0.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年福建省厦门二中高二(上)数学周末练习8(文科)(解析版) 题型:解答题

已知二次函数f(x)=ax2-(2a+2)x+4(a>0)
(1)若对于任意实数x∈R,f(x)≥0恒成立,求a的值;       
(2)解关于x的不等式f(x)≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c(a≠0)且满足f(-1)=0对任意实数x,都有f(x)-x≥0,并且当x∈(0,2)时,有f(x)≤(
x+12
)2

(1)求f(1)的值;
(2)证明:a>0、c>0;
(3)当x∈[-1,1]时,g(x)=f(x)-mx(m∈R)是单调的,求证:m≤0或m≥1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c.
(1)若f(-1)=0,试判断函数f(x)零点个数;
(2)若对?x1,x2∈R,且x1<x2,f(x1)≠f(x2),试证明?x0∈(x1,x2),使f(x0)=
1
2
[f(x1)+f(x2)]
成立.
(3)是否存在a,b,c∈R,使f(x)同时满足以下条件①对?x∈R,f(x-4)=f(2-x),且f(x)≥0;②对?x∈R,都有0≤f(x)-x≤
1
2
(x-1)2
.若存在,求出a,b,c的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c.
(1)若f(-1)=0,试判断函数f(x)零点个数;
(2)是否存在a,b,c∈R,使f(x)同时满足以下条件:①对任意x∈R,f(x-4)=f(2-x),且f(x)≥0;②对任意x∈R,都有0≤f(x)-x≤
12
(x-1)2
,若存在,求出a,b,c的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c(a>0)的图象与x轴有两个不同的交点,若f(c)=0,且0<x<c时,f(x)>0
(1)证明:
1
a
是f(x)的一个根;(2)试比较
1
a
与c的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+1,对于任意的实数x1、x2(x1≠x2),都有
f(x1)+f(x1)
2
>f(
x1+x2
2
)
成立,且f(x+2)为偶函数.
(1)求a的取值范围;
(2)求函数y=f(x)在[a,a+2]上的值域;
(3)定义区间[m,n]的长度为n-m.是否存在常数a,使的函数y=f(x)在区间[a,3]的值域为D,且D的长度为10-a3

查看答案和解析>>


同步练习册答案