精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2+2x+alnx,若函数f(x)在(0,1)上单调,则实数a的取值范围是(  )
A.a≥0B.a<-4C.a≥0或a≤-4D.a>0或a<-4
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2x+alnx,若函数f(x)在(0,1)上单调递增,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2x+alnx,若函数f(x)在(0,1)上单调,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)=x2+2x+alnx,若函数f(x)在(0,1)上单调,则实数a的取值范围是(  )
A.a≥0B.a<-4C.a≥0或a≤-4D.a>0或a<-4

查看答案和解析>>

科目:高中数学 来源:2012-2013学年福建省泉州市安溪一中、惠安一中、养正中学联考高二(下)期末数学试卷(理科)(解析版) 题型:选择题

已知函数f(x)=x2+2x+alnx,若函数f(x)在(0,1)上单调递增,则实数a的取值范围是( )
A.a<-4
B.a≥0
C.a≤-4
D.a>0

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江西省南昌三中高二(下)期中数学试卷(理科)(解析版) 题型:选择题

已知函数f(x)=x2+2x+alnx,若函数f(x)在(0,1)上单调,则实数a的取值范围是( )
A.a≥0
B.a<-4
C.a≥0或a≤-4
D.a>0或a<-4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2x+alnx.
(Ⅰ)若a=-4,求函数f(x)的极值;
(Ⅱ)当t≥1时,不等式f(2t-1)≥2f(t)-3恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2x+alnx.
(1)求函数f(x)在点(1,f(1))处的切线方程;
(2)若函数f(x)在区间(0,2]上恒为单调函数,求实数a的取值范围;
(3)当t≥1时,不等式f(3t-2)≥3f(t)-6恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2x+alnx.
(1)若函数f(x)在区间(0,1)上是单调函数,求实数a的取值范围;
(2)当t≥1时,不等式f(2t-1)≥2f(t)-3恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2x+alnx(a∈R).
(1)当时a=-4时,求f(x)的最小值;
(2)若函数f(x)在区间(0,1)上为单调函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+
2
x
+alnx(x>0),
(Ⅰ)若函数y=f(x)的图象在x=1处的切线l在两坐标轴上的截距相等,求a的值;
(Ⅱ)若f(x)在[1,+∞]上单调递增,求a的取值范围;
(Ⅲ)若定义在区间D上的函数y=f(x)对于区间D上的任意两个值x1,x2总有以下不等式
1
2
[f(x1)+f(x2)≥f(
x1+x2
2
)成立,则称函数y=f(x)为区间D上的“凹函数”.试证当a≤0时,f(x)为“凹函数”.

查看答案和解析>>


同步练习册答案