ÒÑÖªº¯Êýf£¨x£©=x2+
2
x
+alnx£¨x£¾0£©£¬
£¨¢ñ£©Èôº¯Êýy=f£¨x£©µÄͼÏóÔÚx=1´¦µÄÇÐÏßlÔÚÁ½×ø±êÖáÉϵĽؾàÏàµÈ£¬ÇóaµÄÖµ£»
£¨¢ò£©Èôf£¨x£©ÔÚ[1£¬+¡Þ]Éϵ¥µ÷µÝÔö£¬ÇóaµÄÈ¡Öµ·¶Î§£»
£¨¢ó£©Èô¶¨ÒåÔÚÇø¼äDÉϵĺ¯Êýy=f£¨x£©¶ÔÓÚÇø¼äDÉϵÄÈÎÒâÁ½¸öÖµx1£¬x2×ÜÓÐÒÔϲ»µÈʽ
1
2
[f£¨x1£©+f£¨x2£©¡Ýf£¨
x1+x2
2
£©³ÉÁ¢£¬Ôò³Æº¯Êýy=f£¨x£©ÎªÇø¼äDÉϵġ°°¼º¯Êý¡±£®ÊÔÖ¤µ±a¡Ü0ʱ£¬f£¨x£©Îª¡°°¼º¯Êý¡±£®
·ÖÎö£º£¨¢ñ£©Ç󵼺¯Êý£¬È·¶¨Ð±ÂÊ£¬Çó³öÇеã×ø±ê£¬¿ÉµÃÇÐÏßlµÄ·½³Ì£¬ÀûÓÃÇÐÏßlÔÚÁ½×ø±êÖáÉϵĽؾàÏàµÈ£¬¼´¿ÉÇóµÃ½áÂÛ£»
£¨¢ò£©Ç󵼺¯Êý£¬ÀûÓú¯ÊýΪ[1£¬+¡Þ£©Éϵ¥µ÷Ôöº¯Êý£¬Ôòf¡ä£¨x£©¡Ý0ÔÚ[1£¬+¡Þ£©ÉϺã³ÉÁ¢£¬¼´a¡Ý
2
x
-2x2
ÔÚ[1£¬+¡Þ£©ÉϺã³ÉÁ¢£¬Çó³öÓұ߶ÔÓ¦º¯ÊýµÄ×î´óÖµ£¬¼´¿ÉÇóµÃ½áÂÛ£»            
£¨¢ó£©ÓÉf£¨x£©=x2+
2
x
+alnx£¬µÃ
1
2
[f£¨x1£©+f£¨x2£©=
1
2
(x
2
1
+
x
2
2
)
+
x1+x2
x1x2
+aln
x1x2
£¬f£¨
x1+x2
2
£©=(
x1+x2
2
)2
+
4
x1+x2
+aln
x1+x2
2
£¬ÀûÓûù±¾²»µÈʽ¼´¿ÉµÃµ½½áÂÛ£®
½â´ð£º£¨¢ñ£©½â£º¡ßf¡ä(x)=2x-
2
x2
+
a
x
(x£¾0)

¡àf¡ä£¨1£©=2-2+a=a
¡ßf£¨1£©=3
¡àÇÐÏßlµÄ·½³ÌΪy-3=a£¨x-1£©£¬¼´y=ax-a+3£®
¡ßÇÐÏßlÔÚÁ½×ø±êÖáÉϵĽؾàÏàµÈ£¬
¹Ê¢Ùµ±Ö±Ïßl¹ýÔ­µãʱ£¬-a+3=0£¬¡àa=3£»
¢Úµ±Ö±Ïßl²»¹ýÔ­µãʱ£¬a=-1
ËùÒÔa=3»ò-1£®                                                        
£¨¢ò£©½â£ºÓÉf£¨x£©=x2+
2
x
+alnx£¬µÃf¡ä(x)=2x-
2
x2
+
a
x
(x£¾0)

Èôº¯ÊýΪ[1£¬+¡Þ£©Éϵ¥µ÷Ôöº¯Êý£¬Ôòf¡ä£¨x£©¡Ý0ÔÚ[1£¬+¡Þ£©ÉϺã³ÉÁ¢
¼´²»µÈʽ2x-
2
x2
+
a
x
¡Ý0
ÔÚ[1£¬+¡Þ£©ÉϺã³ÉÁ¢£®Ò²¼´a¡Ý
2
x
-2x2
ÔÚ[1£¬+¡Þ£©ÉϺã³ÉÁ¢  
Áîg(x)=
2
x
-2x2
£¬ÉÏÊöÎÊÌâµÈ¼ÛÓÚa¡Ýg£¨x£©max
¶øg(x)=
2
x
-2x2
ΪÔÚ[1£¬+¡Þ£©Éϵļõº¯Êý£¬Ôòg£¨x£©max=g£¨1£©=0£¬
ÓÚÊÇa¡Ý0ΪËùÇó                                                           
£¨¢ó£©Ö¤Ã÷£ºÓÉf£¨x£©=x2+
2
x
+alnx£¬µÃ
1
2
[f£¨x1£©+f£¨x2£©=
1
2
(x
2
1
+
x
2
2
)
+
x1+x2
x1x2
+aln
x1x2

f£¨
x1+x2
2
£©=(
x1+x2
2
)2
+
4
x1+x2
+aln
x1+x2
2

¶ø
1
2
(x
2
1
+
x
2
2
)¡Ý(
x1+x2
2
)2
 ¢Ù
ÓÖ(x1+x2)2=
x
2
1
+
x
2
2
+2x1x2¡Ý4x1x2
£¬¡à
x1+x2
x1x2
¡Ý
4
x1+x2
  ¢Ú
¡ß
x1x2
¡Ü
x1+x2
2
£¬¡àln
x1x2
¡Üln
x1+x2
2
£¬
¡ßa¡Ü0£¬¡àaln
x1x2
¡Ýaln
x1+x2
2
£¬¢Û
ÓÉ¢Ù¡¢¢Ú¡¢¢ÛµÃ
1
2
(x
2
1
+
x
2
2
)
+
x1+x2
x1x2
+aln
x1x2
¡Ý(
x1+x2
2
)2
+
4
x1+x2
+aln
x1+x2
2

¼´
1
2
[f£¨x1£©+f£¨x2£©¡Ýf£¨
x1+x2
2
£©£¬´Ó¶øÓÉ°¼º¯ÊýµÄ¶¨Òå¿ÉÖªº¯ÊýΪ°¼º¯Êý
µãÆÀ£º±¾Ì⿼²éµ¼Êý֪ʶµÄÔËÓ㬿¼²éµ¼ÊýµÄ¼¸ºÎÒâÒ壬¿¼²éº¯ÊýµÄµ¥µ÷ÐÔ£¬¿¼²é²»µÈʽµÄÖ¤Ã÷£¬¿¼²éж¨Ò壬ÕýÈ·Àí½âж¨ÒåÊǹؼü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÒÑÖªº¯Êýf£¨x£©=Asin£¨¦Øx+¦Õ£©£¨x¡ÊR£¬A£¾0£¬¦Ø£¾0£¬|¦Õ|£¼
¦Ð
2
£©µÄ²¿·ÖͼÏóÈçͼËùʾ£¬Ôòf£¨x£©µÄ½âÎöʽÊÇ£¨¡¡¡¡£©
A¡¢f(x)=2sin(¦Ðx+
¦Ð
6
)(x¡ÊR)
B¡¢f(x)=2sin(2¦Ðx+
¦Ð
6
)(x¡ÊR)
C¡¢f(x)=2sin(¦Ðx+
¦Ð
3
)(x¡ÊR)
D¡¢f(x)=2sin(2¦Ðx+
¦Ð
3
)(x¡ÊR)

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•ÉîÛÚһģ£©ÒÑÖªº¯Êýf(x)=
1
3
x3+bx2+cx+d
£¬ÉèÇúÏßy=f£¨x£©ÔÚÓëxÖá½»µã´¦µÄÇÐÏßΪy=4x-12£¬f¡ä£¨x£©Îªf£¨x£©µÄµ¼º¯Êý£¬ÇÒÂú×ãf¡ä£¨2-x£©=f¡ä£¨x£©£®
£¨1£©Çóf£¨x£©£»
£¨2£©Éèg(x)=x
f¡ä(x)
 £¬ m£¾0
£¬Çóº¯Êýg£¨x£©ÔÚ[0£¬m]ÉϵÄ×î´óÖµ£»
£¨3£©Éèh£¨x£©=lnf¡ä£¨x£©£¬Èô¶ÔÒ»ÇÐx¡Ê[0£¬1]£¬²»µÈʽh£¨x+1-t£©£¼h£¨2x+2£©ºã³ÉÁ¢£¬ÇóʵÊýtµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•ÉϺ£Ä£Ä⣩ÒÑÖªº¯Êýf(x)=(
x
a
-1)2+(
b
x
-1)2£¬x¡Ê(0£¬+¡Þ)
£¬ÆäÖÐ0£¼a£¼b£®
£¨1£©µ±a=1£¬b=2ʱ£¬Çóf£¨x£©µÄ×îСֵ£»
£¨2£©Èôf£¨a£©¡Ý2m-1¶ÔÈÎÒâ0£¼a£¼bºã³ÉÁ¢£¬ÇóʵÊýmµÄÈ¡Öµ·¶Î§£»
£¨3£©Éèk¡¢c£¾0£¬µ±a=k2£¬b=£¨k+c£©2ʱ£¬¼Çf£¨x£©=f1£¨x£©£»µ±a=£¨k+c£©2£¬b=£¨k+2c£©2ʱ£¬¼Çf£¨x£©=f2£¨x£©£®
ÇóÖ¤£ºf1(x)+f2(x)£¾
4c2
k(k+c)
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£ºÉϺ£Ä£Äâ ÌâÐÍ£º½â´ðÌâ

ÒÑÖªº¯Êýf(x)=(
x
a
-1)2+(
b
x
-1)2£¬x¡Ê(0£¬+¡Þ)
£¬ÆäÖÐ0£¼a£¼b£®
£¨1£©µ±a=1£¬b=2ʱ£¬Çóf£¨x£©µÄ×îСֵ£»
£¨2£©Èôf£¨a£©¡Ý2m-1¶ÔÈÎÒâ0£¼a£¼bºã³ÉÁ¢£¬ÇóʵÊýmµÄÈ¡Öµ·¶Î§£»
£¨3£©Éèk¡¢c£¾0£¬µ±a=k2£¬b=£¨k+c£©2ʱ£¬¼Çf£¨x£©=f1£¨x£©£»µ±a=£¨k+c£©2£¬b=£¨k+2c£©2ʱ£¬¼Çf£¨x£©=f2£¨x£©£®
ÇóÖ¤£ºf1(x)+f2(x)£¾
4c2
k(k+c)
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£ºÉîÛÚһģ ÌâÐÍ£º½â´ðÌâ

ÒÑÖªº¯Êýf(x)=
1
3
x3+bx2+cx+d
£¬ÉèÇúÏßy=f£¨x£©ÔÚÓëxÖá½»µã´¦µÄÇÐÏßΪy=4x-12£¬f¡ä£¨x£©Îªf£¨x£©µÄµ¼º¯Êý£¬ÇÒÂú×ãf¡ä£¨2-x£©=f¡ä£¨x£©£®
£¨1£©Çóf£¨x£©£»
£¨2£©Éèg(x)=x
f¡ä(x)
 £¬ m£¾0
£¬Çóº¯Êýg£¨x£©ÔÚ[0£¬m]ÉϵÄ×î´óÖµ£»
£¨3£©Éèh£¨x£©=lnf¡ä£¨x£©£¬Èô¶ÔÒ»ÇÐx¡Ê[0£¬1]£¬²»µÈʽh£¨x+1-t£©£¼h£¨2x+2£©ºã³ÉÁ¢£¬ÇóʵÊýtµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸