精英家教网 > 高中数学 > 题目详情
已知集合M={(x,y)|y=k(x-1)+1,x,y∈R},集合N={(x,y)|x2+y2-2y=0,x,y∈R}那么M∩N中(  )
A.不可能有两个元素B.至多有一个元素
C.不可能只有一个元素D.必含无数个元素
相关习题

科目:高中数学 来源: 题型:

已知集合M={(x,y)|y=k(x-1)+1,x,y∈R},集合N={(x,y)|x2+y2-2y=0,x,y∈R}那么M∩N中(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知集合M={(x,y)|y=k(x-1)+1,x,y∈R},集合N={(x,y)|x2+y2-2y=0,x,y∈R}那么M∩N中(  )
A.不可能有两个元素B.至多有一个元素
C.不可能只有一个元素D.必含无数个元素

查看答案和解析>>

科目:高中数学 来源:2005-2006学年重庆市重点中学高二(上)期末数学试卷(解析版) 题型:选择题

已知集合M={(x,y)|y=k(x-1)+1,x,y∈R},集合N={(x,y)|x2+y2-2y=0,x,y∈R}那么M∩N中( )
A.不可能有两个元素
B.至多有一个元素
C.不可能只有一个元素
D.必含无数个元素

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知集合M={(x,y)|y=k(x-1)+1,x,y∈R},集合N={(x,y)|x2+y2-2y=0,x,y∈R}那么M∩N中


  1. A.
    不可能有两个元素
  2. B.
    至多有一个元素
  3. C.
    不可能只有一个元素
  4. D.
    必含无数个元素

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M是满足下列性质的函数f(x)的全体:存在非零常数T,对任意x∈R,有f(x+T)=T•f(x)成立.
(1)函数f(x)=x是否属于集合M?说明理由;
(2)设函数f(x)=ax(a>0,且a≠1)的图象与y=x的图象有公共点,证明:f(x)=ax∈M;
(3)若函数f(x)=sinkx∈M,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源:上海高考真题 题型:解答题

已知集合M是满足下列性质的函数f(x)的全体:存在非零常数T,对任意x∈R,有f(x+T)=T f(x)成立。
(1)函数f(x)= x 是否属于集合M?说明理由;
(2)设函数f(x)=ax(a>0,且a≠1)的图象与y=x的图象有公共点,证明:f(x)=ax∈M;
(3)若函数f(x)=sinkx∈M ,求实数k的取值范围。

查看答案和解析>>

科目:高中数学 来源:湖北省同步题 题型:解答题

已知集合M是满足下列性质的函数f(x)的全体:存在非零常数T,对任意x∈R,
有f(x+T)=T f(x)成立.
(1)函数f(x)=x是否属于集合M?说明理由;
(2)设函数f(x)=ax(a>0,且a≠1)的图象与y=x的图象有公共点,证明:f(x)=ax∈M;
(3)若函数f(x)=sinkx∈M,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源:《第1章 集合与函数》2011年单元测试卷(肇庆实验中学)(解析版) 题型:解答题

已知集合M是满足下列性质的函数f(x)的全体:存在非零常数T,对任意x∈R,有f(x+T)=T f(x)成立.
(1)函数f(x)=x是否属于集合M?说明理由;
(2)设函数f(x)=ax(a>0,且a≠1)的图象与y=x的图象有公共点,证明:f(x)=ax∈M;
(3)若函数f(x)=sinkx∈M,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省绍兴一中高三(上)10月段考数学试卷(理科)(解析版) 题型:解答题

已知集合M是满足下列性质的函数f(x)的全体:存在非零常数T,对任意x∈R,有f(x+T)=T f(x)成立.
(1)函数f(x)=x是否属于集合M?说明理由;
(2)设函数f(x)=ax(a>0,且a≠1)的图象与y=x的图象有公共点,证明:f(x)=ax∈M;
(3)若函数f(x)=sinkx∈M,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年湖北省宜昌市枝江一中高考一轮复习数学专项训练:集合、不等式(解析版) 题型:解答题

已知集合M是满足下列性质的函数f(x)的全体:存在非零常数T,对任意x∈R,有f(x+T)=T f(x)成立.
(1)函数f(x)=x是否属于集合M?说明理由;
(2)设函数f(x)=ax(a>0,且a≠1)的图象与y=x的图象有公共点,证明:f(x)=ax∈M;
(3)若函数f(x)=sinkx∈M,求实数k的取值范围.

查看答案和解析>>


同步练习册答案