精英家教网 > 高中数学 > 题目详情
已知数列{an}满足:a1=1,an>0,
a2n+1
-
a2n
=1(n∈N*)
,那么使an<5成立的n的最大值为(  )
A.4B.5C.24D.25
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1,an>0,
a
2
n+1
-
a
2
n
=1(n∈N*)
,那么使an<5成立的n的最大值为(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知数列{an}满足:a1=1,an>0,
a2n+1
-
a2n
=1(n∈N*)
,那么使an<5成立的n的最大值为(  )
A.4B.5C.24D.25

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列{an}满足:a1=1,an-an-1+2anan-1=0,(n∈N*,n>1)
(Ⅰ)求证数列{
1
an
}
是等差数列并求{an}的通项公式;
(Ⅱ)设bn=anan+1,求证:b1+b2+…+bn
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1,a2=a(a>0),数列{bn}满足bn=anan+1(n∈N*
(Ⅰ)若{an}是等差数列,且b3=12,求数列{an}的通项公式.
(Ⅱ)若{an}是等比数列,求数列{bn}的前n项和Sn
(Ⅲ)若{bn}是公比为a-1的等比数列时,{an}能否为等比数列?若能,求出a的值;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1,a2=a(a>0).正项数列{bn}满足bn2=anan+1(n∈N*).若 {bn}是公比为
2
的等比数列
(1)求{an}的通项公式;
(2)若a=
2
,Sn为{an}的前n项和,记Tn=
17Sn-S2n
an+1
Tn0为数列{Tn}的最大项,求n0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}满足:a1=1,a2=a(a>0).正项数列{bn}满足数学公式=anan+1(n∈N*).若 {bn}是公比为数学公式的等比数列
(1)求{an}的通项公式;
(2)若a=数学公式,Sn为{an}的前n项和,记Tn=数学公式数学公式为数列{Tn}的最大项,求n0

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列{an}满足:a1=1,a2=a(a>0).正项数列{bn}满足bn2=anan+1(n∈N*).若 {bn}是公比为
2
的等比数列
(1)求{an}的通项公式;
(2)若a=
2
,Sn为{an}的前n项和,记Tn=
17Sn-S2n
an+1
Tn0为数列{Tn}的最大项,求n0

查看答案和解析>>

科目:高中数学 来源:0112 模拟题 题型:解答题

已知数列{an}满足:a1=1,a2=a(a>0),数列{bn}满足bn=anan+1(n∈N*)。
(Ⅰ)若{an}是等差数列,且b3=12,求数列{an}的通项公式;
(Ⅱ)若{an}是等比数列,求数列{bn}的前n项和Sn
(Ⅲ)若{bn}是公比为a-1的等比数列时,{an}能否为等比数列?若能,求出a的值;若不能,请说明理由。

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省丽水中学高三(下)第一次月考数学试卷(理科)(解析版) 题型:解答题

已知数列{an}满足:a1=1,a2=a(a>0),数列{bn}满足bn=anan+1(n∈N*
(Ⅰ)若{an}是等差数列,且b3=12,求数列{an}的通项公式.
(Ⅱ)若{an}是等比数列,求数列{bn}的前n项和Sn
(Ⅲ)若{bn}是公比为a-1的等比数列时,{an}能否为等比数列?若能,求出a的值;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2011年江苏省扬州市期末数学复习试卷(二)(解析版) 题型:解答题

已知数列{an}满足:a1=1,a2=a(a>0),数列{bn}满足bn=anan+1(n∈N*
(Ⅰ)若{an}是等差数列,且b3=12,求数列{an}的通项公式.
(Ⅱ)若{an}是等比数列,求数列{bn}的前n项和Sn
(Ⅲ)若{bn}是公比为a-1的等比数列时,{an}能否为等比数列?若能,求出a的值;若不能,请说明理由.

查看答案和解析>>


同步练习册答案