精英家教网 > 初中数学 > 题目详情
在抛物线y=
1
2
x2-4
上的一个点是(  )
A.(1,O)B.(2,2)C.(4,0)D.(0,-4)
相关习题

科目:初中数学 来源: 题型:

已知抛物线:y1=-
12
x2+2x
将抛物线y1向右平移2个单位,再向上平移1个精英家教网单位,得到抛物线y2
(1)求抛物线y2的解析式.
(2)如图,抛物线y2的顶点为P,x轴上有一动点M,在y1、y2这两条抛物线上是否存在点N,使O(原点)、P、M、N四点构成以OP为一边的平行四边形?若存在,求出N点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=
1
2
x2-(m-3)x+
5-4m
2

(1)求证:无论m为任何实数,抛物线与x轴总有两个交点;
(2)若A(n-3,n2+2)、B(-n+1,n2+2)是抛物线上的两个不同点,求抛物线的解析式和n的值;
(3)若反比例函数y=
k
x
(k>0,   x>0)
的图象与(2)中的抛物线在第一象限内的交点的横坐标为x0,且满足2<x0<3,求k的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=
1
2
x2-(m-3)x+
5-4m
2

(1)求证:无论m为任何实数,抛物线与x轴总有两个交点;
(2)若A(n-3,n2+2)、B(-n+1,n2+2)是抛物线上的两个不同点,求抛物线的解析式和n的值;
(3)若反比例函数y=
k
x
(k>0,   x>0)
的图象与(2)中的抛物线在第一象限内的交点的横坐标为x0,且满足2<x0<3,求k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①,抛物线y=
1
2
x2+x-4与x轴的两个交点分别为A、B,与y轴的交点为C.
(1)请直接写出点A、B、C的坐标;
(2)如图①,点Q是函数y=
1
2
x2+x-4的图象在第三象限上的任一点,点Q的横坐标为m,设四边形AQCB的面积为S,求S与m之间的函数关系式,并求出m这何值时,S有最大值,最大值是多少?
(3)抛物线y=
1
2
x2+x-4的对称轴上是否存在一点H,使△BCH的周长最小?若存在,请直接写出H点坐标;若不存在,请说明理由.
(4)如图②,若点E为线段BC的中点,EF垂直平分BC交x轴于点F(-3,0),点P是抛物线y=
1
2
x2+x-4对称轴上的一点,设P点的纵坐标为t,请直接写出∠PEC为钝角三角形时t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y=
12
x2+bx-2与x轴交于A,B两点,与y轴交于C点,且A(-1,0).
(1)求b的值以及点B,C,顶点D的坐标;
(2)若以AB为直径作圆,试证明点C在该圆上,并写出该圆与抛物线的另一个交点E坐标;
(3)点M(m,0)是线段OB(含两端点)上的一个动点,求当m为何值时,CM+DM有最小值和最大值?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=-
1
2
x2+(5-
m2
)x+m-3
与x轴有两个交点A,B,点A在x轴的正精英家教网半轴上,点B在x轴的负半轴上,且OA=OB.
(1)求m的值;
(2)求抛物线的表达式,并写出抛物线的对称轴和顶点C的坐标;
(3)问抛物线上是否存在一点M,使△MAC≌△OAC?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

抛物线y=
1
2
x2+(k+
1
2
)x+(k+1)(k为常数)与x轴交于A(x1,0)、B(x2,0)(x1<0<x2)两点,与y轴交于C点,且满足(OA+OB)2=OC2+16.
(1)求此抛物线的解析式;
(2)设M、N是抛物线在x轴上方的两点,且到x轴的距离均为1,点P是抛物线的顶点,问:过M、N、C三点的圆与直线CP是否只有一个公共点C?试证明你的结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

抛物线y=
1
2
x2+(k+
1
2
)x+(k+1)(k为常数)与x轴交于A(x1,0)、B(x2,0)(x1<0<x2)两点,与y轴交于C点,且满足(OA+OB)2=OC2+16.
(1)求此抛物线的解析式;
(2)设M、N是抛物线在x轴上方的两点,且到x轴的距离均为1,点P是抛物线的顶点,问:过M、N、C三点的圆与直线CP是否只有一个公共点C?试证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系xOy中,抛物线y=-
12
x2+bx+c与x轴交于A、B两点(点A在原点的左侧,点B在原点的右侧),与y轴交于点C,且OA=2,OC=3.
(1)求抛物线的解析式;
(2)若点E在第一象限内的此抛物线上,且OE⊥BC于D,求点E的坐标;
(3)在抛物线的对称轴上是否存在一点P,使线段PA与PE之差的值最大?若存在,请求出这个最大值和点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线过点A(x1,0)、B(x2,0)、C(0,-8),x1、x2是方程
1
2
x2-x-4=0的两根,且x1>x2,点D是此抛物线的顶点.
(1)求这条抛物线的表达式;
(2)填空:(1)问题中抛物线先向上平移3个单位,再向右平移2个单位,得到的抛物线是
y=(x-3)2-6
y=(x-3)2-6

(3)在第一象限内,问题(1)中的抛物线上是否存在点P,使S△ABP=
1
5
S四边形ABCD

查看答案和解析>>


同步练习册答案