精英家教网 > 高中数学 > 题目详情
已知数列{an}中a1=16,an+1-an=-2(n∈N+),则数列{an}的前n项和Sn最大时,n的值为(  )
A.8B.7或8C.8或9D.9
相关习题

科目:高中数学 来源: 题型:

已知数列{an}中a1=16,an+1-an=-2(n∈N+),则数列{an}的前n项和Sn最大时,n的值为(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知数列{an}中a1=16,an+1-an=-2(n∈N+),则数列{an}的前n项和Sn最大时,n的值为(  )
A.8B.7或8C.8或9D.9

查看答案和解析>>

科目:高中数学 来源:2012-2013学年福建省福州市文博中学高二(上)期中数学试卷(解析版) 题型:选择题

已知数列{an}中a1=16,an+1-an=-2(n∈N+),则数列{an}的前n项和Sn最大时,n的值为( )
A.8
B.7或8
C.8或9
D.9

查看答案和解析>>

科目:高中数学 来源:2012-2013学年安徽省亳州二中高二(上)期中数学试卷(理科)(解析版) 题型:选择题

已知数列{an}中a1=16,an+1-an=-2(n∈N+),则数列{an}的前n项和Sn最大时,n的值为( )
A.8
B.7或8
C.8或9
D.9

查看答案和解析>>

科目:高中数学 来源:2012-2013学年福建省福州市文博中学高二(上)期中数学试卷(解析版) 题型:选择题

已知数列{an}中a1=16,an+1-an=-2(n∈N+),则数列{an}的前n项和Sn最大时,n的值为( )
A.8
B.7或8
C.8或9
D.9

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知数列{an}中a1=16,an+1-an=-2(n∈N+),则数列{an}的前n项和Sn最大时,n的值为


  1. A.
    8
  2. B.
    7或8
  3. C.
    8或9
  4. D.
    9

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=3,a2=5,其前n项和Sn满足Sn+Sn-2=2Sn-1+2n-1(n≥3).令bn=
1
anan+1

(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若f(x)=2x-1,求证:Tn=b1f(1)+b2f(2)+…+bnf(n)<
1
6
(n≥1).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=3,a2=5,其前n项和Sn满足Sn+Sn-2=2Sn-1+2n-1(n≥3).令bn=
1
anan+1

(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若f(x)=2x-1,求证:Tn=b1f(1)+b2f(2)+…+bnf(n)<
1
6
(n≥1);
(Ⅲ)令Tn=
1
2
(b1a+b2a2+b3a3+…+bnan)
(a>0),求同时满足下列两个条件的所有a的值:①对于任意正整数n,都有Tn
1
6
;②对于任意的m∈(0,
1
6
)
,均存在n0∈N*,使得n≥n0时,Tn>m.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=2,an+1-an-2n-2=0(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn=
1
an+1
+
1
an+2
+
1
an+3
+…+
1
a2n
,若对任意的正整数n,当m∈[-1,1]时,不等式t2-2mt+
1
6
bn
恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=3,a2=5,Sn为其前n项和,且满足Sn+Sn-2=2Sn-1+2n-1(n≥3,n∈N*).
(1)求数列{an}的通项公式;
(2)令bn=
n
an-1
,求数列{bn}的前n项和Tn
(3)若f(x)=2x-1,cn=
1
anan+1
,Qn=c1f(1)+c2f(2)+…+cnf(n),求证Qn
1
6
(n∈N*).

查看答案和解析>>


同步练习册答案