精英家教网 > 高中数学 > 题目详情
已知函数f(x)=lnx-
1
4
x+
3
4x
-1,g(x)=x2-2bx+4,若对任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),则实数b的取值范围是(  )
A.(2,
17
8
]
B.[1,+∞)C.[
17
8
,+∞)
D.[2,+∞)
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-
1
4
x+
3
4x
-1,g(x)=x2-2bx+4,若对任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),则实数b的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)=lnx-
1
4
x+
3
4x
-1,g(x)=x2-2bx+4,若对任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),则实数b的取值范围是(  )
A.(2,
17
8
]
B.[1,+∞)C.[
17
8
,+∞)
D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-
1
4
x+
3
4x
-1

(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)设g(x)=-x2+2bx-4,若对任意x1∈(0,2),x2∈[1,2],不等式f(x1)≥g(x2) 恒成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=lnx-
1
4
x+
3
4x
-1

(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)设g(x)=-x2+2bx-4,若对任意x1∈(0,2),x2∈[1,2],不等式f(x1)≥g(x2) 恒成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-
1
4
x+
3
4x
,g(x)=x2-2bx+4.若对任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),则实数b取值范围是
[
14
2
,+∞)
[
14
2
,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=lnx-
1
4
x+
3
4x
,g(x)=x2-2bx+4.若对任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),则实数b取值范围是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-
1
4
x+
3
4x
-1

(1)求函数f(x)在(0,2)上的最小值;
(2)设g(x)=-x2+2mx-4,若对任意x1∈(0,2),x2∈[1,2],不等式f(x1)≥g(x2)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:孝感模拟 题型:解答题

已知函数f(x)=lnx-
1
4
x+
3
4x
-1,g(x)=x2-2mx+4

(I)求函数f(x)的单调区间;
(Ⅱ)若对任意x1∈(0,2),总存在x2∈[1,2]使f(x1)≥g(x2),求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•孝感模拟)已知函数f(x)=lnx-
1
4
x+
3
4x
-1,g(x)=x2-2mx+4

(I)求函数f(x)的单调区间;
(Ⅱ)若对任意x1∈(0,2),总存在x2∈[1,2]使f(x1)≥g(x2),求实数m的取值范围.

查看答案和解析>>


同步练习册答案