精英家教网 > 高中数学 > 题目详情
已知函数f(x)=lnx-
1
4
x+
3
4x
-1

(1)求函数f(x)在(0,2)上的最小值;
(2)设g(x)=-x2+2mx-4,若对任意x1∈(0,2),x2∈[1,2],不等式f(x1)≥g(x2)恒成立,求实数m的取值范围.
分析:(1)求导函数,确定函数f(x)在(0,2)上的单调性,从而可得函数f(x)的极小值,即可求出最小值;
(2)由(1)知,f(x)min=-
1
2
对任意x1∈(0,2),x2∈[1,2],不等式f(x1)≥g(x2)恒成立,等价于-x2+2mx-4≤-
1
2
,x,∈[1,2]恒成立,利用分离参数法及基本不等式,即可求得实数m的取值范围.
解答:解:(1)求导函数,可得f′(x)=
1
x
-
1
4
-
3
4x2
=
4x-x2-3
4x2

∵0<x<2,令f′(x)>0,可得1<x<2;令f′(x)>0,可得0<x<1
∴函数f(x)在(0,2)上的单调递增区间是(1,2),单调递减区间是(0,1)
∴函数f(x)在x=1处,取得极小值,且为最小值f(1)=-
1
2

(2)由(1)知,f(x)min=-
1
2

对任意x1∈(0,2),x2∈[1,2],不等式f(x1)≥g(x2)恒成立,等价于-x2+2mx-4≤-
1
2
,x,∈[1,2]恒成立.
m≤
7
4x
+
x
2
,x,∈[1,2]恒成立.
7
4x
+
x
2
≥2
7
4x
×
x
2
=
14
2
,当且仅当
7
4x
=
x
2
,即x=
14
2
时取等号
m≤
14
2

∴实数m的取值范围为(-∞,
14
2
]
点评:本题考查导数知识的运用,考查恒成立问题,考查分离参数法的运用,解题的关键是利用导数确定函数的单调性与最值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-
3
2
ax2-(a-3)x+b

(1)若函数f(x)在P(0,f(0))的切线方程为y=5x+1,求实数a,b的值:
(2)当a<3时,令g(x)=
f′(x)
x
,求y=g(x)在[l,2]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2-alnx
的图象在点P(2,f(2))处的切线方程为l:y=x+b
(1)求出函数y=f(x)的表达式和切线l的方程;
(2)当x∈[
1
e
,e]
时(其中e=2.71828…),不等式f(x)<k恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=
12
x2+a
(a为常数),直线l与函数f(x)、g(x)的图象都相切,且l与函数f(x)的图象的切点的横坐标为1.
(1)求直线l的方程及a的值;
(2)当k>0时,试讨论方程f(1+x2)-g(x)=k的解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
13
x3+x2+ax

(1)讨论f(x)的单调性;
(2)设f(x)有两个极值点x1,x2,若过两点(x1,f(x1)),(x2,f(x2))的直线l与x轴的交点在曲线y=f(x)上,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-
32
ax2+b
,a,b为实数,x∈R,a∈R.
(1)当1<a<2时,若f(x)在区间[-1,1]上的最小值、最大值分别为-2、1,求a、b的值;
(2)在(1)的条件下,求经过点P(2,1)且与曲线f(x)相切的直线l的方程;
(3)试讨论函数F(x)=(f′(x)-2x2+4ax+a+1)•ex的极值点的个数.

查看答案和解析>>

同步练习册答案