精英家教网 > 初中数学 > 题目详情
平面直角坐标系中有A、B、C三点,A与B关于x轴对称,A与C关于原点对称,A的坐标是(-3,2),则△ABC的面积等于(  )
A.24B.20C.16D.12
相关习题

科目:初中数学 来源: 题型:

平面直角坐标系中有A、B、C三点,A与B关于x轴对称,A与C关于原点对称,A的坐标是(-3,2),则△ABC的面积等于(  )
A、24B、20C、16D、12

查看答案和解析>>

科目:初中数学 来源:宝安区二模 题型:单选题

平面直角坐标系中有A、B、C三点,A与B关于x轴对称,A与C关于原点对称,A的坐标是(-3,2),则△ABC的面积等于(  )
A.24B.20C.16D.12

查看答案和解析>>

科目:初中数学 来源:2006年广东省深圳市宝安区中考数学二模试卷(解析版) 题型:选择题

平面直角坐标系中有A、B、C三点,A与B关于x轴对称,A与C关于原点对称,A的坐标是(-3,2),则△ABC的面积等于( )
A.24
B.20
C.16
D.12

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

平面直角坐标系中有A、B、C三点,A与B关于x轴对称,A与C关于原点对称,A的坐标是(-3,2),则△ABC的面积等于


  1. A.
    24
  2. B.
    20
  3. C.
    16
  4. D.
    12

查看答案和解析>>

科目:初中数学 来源:江苏中考真题 题型:单选题

平面直角坐标系中,已知点O(0,0)、A(0,2)、B(1,0),点P是反比例函数图象上的一个动点,过点P作PQ⊥x轴,垂足为点Q,若以点O、P、Q为顶点的三角形与△OAB相似,则相应的点P共有
[     ]
A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源:江苏省徐州市2011年初中毕业、升学考试数学试题 题型:013

平面直角坐标系中,已知点O(0,o)、A(0,2)、B(1,0),点P是反比例函数y=-图象上的一个动点,过点P作PQ⊥x轴,垂足为点Q.若以点O、P、Q为顶点的三角形与△OAB相似,则相应的点P共有

[  ]

A.1个

B.2个

C.3个

D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系中,给定以下五点A(-2,0),B(1,0),C(4,0),D(-2,
92
),E(0,-6).从这五点中选取三点,使经过这三点的精英家教网抛物线满足以平行于y轴的直线为对称轴.我们约定:把经过三点A、E、B的抛物线表示为抛物线AEB.(如图所示)
(1)问符合条件的抛物线还有哪几条?不求解析式,请用约定的方法一一表示出来;
(2)在(1)中是否存在这样的一条抛物线,它与余下的两点所确定的直线不相交?如果存在,试求出抛物线及直线的解析式;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系中,直线AB与x轴,y轴相交于A,B两点,直线AB的函数表达式为 y=-
3
4
x-6
,圆M经过原点O,A,B三点.
(1)求出A,B的坐标;
(2)若有一抛物线的对称轴平行于y轴且经过点M,顶点C在⊙M上且抛物线经过点B,求此抛物线的函数解析式;
(3)如图,设(2)中求得的开口向下的抛物线交x轴于D、E两点,抛物线上是否存在点P,使得S△PDE=
1
10
S△ABC
?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在平面直角坐标系中,已知抛物线y=数学公式x2+bx+c(b,c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,-1),C的坐标为(4,3),直角顶点B在第四象限.
(1)如图,若该抛物线过A,B两点,求该抛物线的函数表达式;
(2)平移(1)中的抛物线,使顶点P在直线AC上滑动,且与AC交于另一点Q.
(i)若点M在直线AC下方,且为平移前(1)中的抛物线上的点,当以M、P、Q三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M的坐标;
(ii)取BC的中点N,连接NP,BQ.试探究数学公式是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2013年四川省成都市中考数学试卷(解析版) 题型:解答题

在平面直角坐标系中,已知抛物线y=x2+bx+c(b,c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,-1),C的坐标为(4,3),直角顶点B在第四象限.
(1)如图,若该抛物线过A,B两点,求该抛物线的函数表达式;
(2)平移(1)中的抛物线,使顶点P在直线AC上滑动,且与AC交于另一点Q.
(i)若点M在直线AC下方,且为平移前(1)中的抛物线上的点,当以M、P、Q三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M的坐标;
(ii)取BC的中点N,连接NP,BQ.试探究是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案