精英家教网 > 初中数学 > 题目详情
在平面直角坐标系中,二次函数y=x2-1的图象与x轴的交点的个数是(  )
A.3B.2C.1D.0
相关习题

科目:初中数学 来源: 题型:

在平面直角坐标系中,二次函数y=x2-1的图象与x轴的交点的个数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在平面直角坐标系中,二次函数y=x2+2x-3的图象与x轴交于A、B两点(点A在点B的左侧),交y轴于点E.点C是点A关于点B的对称点,点F是线段BC的中点,直线l过点F且与y轴平行.一次函数y=-x+m的图象过点C,交y轴于D点.
(1)求点C、点F的坐标;
(2)点K为线段AB上一动点,过点K作x轴的垂线与直线CD交于点H,与抛物线交于点G,求线段HG长度的最大值;
(3)在直线l上取点M,在抛物线上取点N,使以点A,C,M,N为顶点的四边形是平行四边形,求点N的坐标.

查看答案和解析>>

科目:初中数学 来源:2012年北京市门头沟区中考数学一模试卷(解析版) 题型:解答题

在平面直角坐标系中,二次函数y=x2+2x-3的图象与x轴交于A、B两点(点A在点B的左侧),交y轴于点E.点C是点A关于点B的对称点,点F是线段BC的中点,直线l过点F且与y轴平行.一次函数y=-x+m的图象过点C,交y轴于D点.
(1)求点C、点F的坐标;
(2)点K为线段AB上一动点,过点K作x轴的垂线与直线CD交于点H,与抛物线交于点G,求线段HG长度的最大值;
(3)在直线l上取点M,在抛物线上取点N,使以点A,C,M,N为顶点的四边形是平行四边形,求点N的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在平面直角坐标系中,二次函数y=x2-1的图象与x轴的交点的个数是(  )
A.3B.2C.1D.0

查看答案和解析>>

科目:初中数学 来源:2011-2012学年江苏省盐城市第一初级中学教育集团九年级(上)调研考试数学试卷(1)(解析版) 题型:选择题

在平面直角坐标系中,二次函数y=x2-1的图象与x轴的交点的个数是( )
A.3
B.2
C.1
D.0

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

在平面直角坐标系中,二次函数y=x2-1的图象与x轴的交点的个数是


  1. A.
    3
  2. B.
    2
  3. C.
    1
  4. D.
    0

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,二次函数y=-x2+4x+5的图象交x轴于点A、B(点A在点B的右边),交y轴于点C,顶点为P.点M是射线OA上的一个动点(不与点O重合)精英家教网,点N是x轴负半轴上的一点,NH⊥CM,交CM(或CM的延长线)于点H,交y轴于点D,且ND=CM.
(1)求证:OD=OM;
(2)设OM=t,当t为何值时以C、M、P为顶点的三角形是直角三角形?
(3)问:当点M在射线OA上运动时,是否存在实数t,使直线NH与以AB为直径的圆相切?若存在,请求出相应的t值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,-3)点,点P是直线BC下方的抛物线上一动点.
(1)求这个二次函数的表达式.
(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.
(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A(-
12
,0),精英家教网B(2,0),且与y轴交于点C.
(1)求该抛物线的解析式,并判断△ABC的形状;
(2)点P是x轴下方的抛物线上一动点,连接PO,PC,并把△POC沿CO翻折,得到四边形POP′C,求出使四边形POP′C为菱形的点P的坐标;
(3)在此抛物线上是否存在点Q,使得以A,C,B,Q四点为顶点的四边形是直角梯形?若存在,求出Q点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,-3)点,点P是直线BC下方的抛物线上一动点.
(1)分别求出图中直线和抛物线的函数表达式;
(2)连接PO、PC,并把△POC沿C O翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案