精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和为Sn,若对于任意n∈N*,点Pn(n,Sn)都在直线y=3x+2上,则数列{an}(  )
A.是等差数列不是等比数列
B.是等比数列不是等差数列
C.是常数列
D.既不是等差数列也不是等比数列
相关习题

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,若对于任意n∈N*,点Pn(n,Sn)都在直线y=3x+2上,则数列{an}(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知数列{an}的前n项和为Sn,若对于任意n∈N*,点Pn(n,Sn)都在直线y=3x+2上,则数列{an}(  )
A.是等差数列不是等比数列
B.是等比数列不是等差数列
C.是常数列
D.既不是等差数列也不是等比数列

查看答案和解析>>

科目:高中数学 来源:2008-2009学年上海市闵行区七宝中学高三(下)3月月考数学试卷(理科)(解析版) 题型:选择题

已知数列{an}的前n项和为Sn,若对于任意n∈N*,点Pn(n,Sn)都在直线y=3x+2上,则数列{an}( )
A.是等差数列不是等比数列
B.是等比数列不是等差数列
C.是常数列
D.既不是等差数列也不是等比数列

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知数列{an}的前n项和为Sn,若对于任意n∈N*,点Pn(n,Sn)都在直线y=3x+2上,则数列{an}


  1. A.
    是等差数列不是等比数列
  2. B.
    是等比数列不是等差数列
  3. C.
    是常数列
  4. D.
    既不是等差数列也不是等比数列

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,若a1=2,n•an+1=Sn+n(n+1).
(1)令bn=(
2
3
)nSn
,是否存在正整数m,使得对一切正整数n,总有bn≤m?若存在,求出m的最小值;若不存在,说明理由.
(2)令Cn=
4
n
a
2
n
(n∈N+),{Cn}
的前n项和为Tn,求证:Tn<3,n∈N+

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,若a1=2,n•an+1=Sn+n(n+1).
(1)求数列{an}的通项公式;
(2)令bn=(
23
)
n
Sn
,是否存在正整数m,使得对一切正整数n,总有bn≤m?若存在,求出m的最小值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,若Sn+an=
n2+3n+52
,问是否存在f(n),使得对于一切n∈N*,都有an=n-f(n)成立,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,若a1=1,Sn=nan-n(n-1),n∈N*,令bn=
1
anan+1
,且数列{bn}的前项和为Tn
(1)求证:数列{an}为等差数列,并写出an关于n的表达式;
(2)若不等式λTn
n+8
5
(λ为常数)对任意正整数n均成立,求λ的取值范围;
(3)是否存在正整数m,n(1<m<n),使得T1,Tm,Tn成等比数列?若存在,求出所有的m,n的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}的前n项和为Sn,若a1=2,n•an+1=Sn+n(n+1).
(1)求数列{an}的通项公式;
(2)令数学公式,是否存在正整数m,使得对一切正整数n,总有bn≤m?若存在,求出m的最小值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}的前n项和为Sn,若a1=1,Sn=nan-n(n-1),n∈N*,令数学公式,且数列{bn}的前项和为Tn
(1)求证:数列{an}为等差数列,并写出an关于n的表达式;
(2)若不等式数学公式(λ为常数)对任意正整数n均成立,求λ的取值范围;
(3)是否存在正整数m,n(1<m<n),使得T1,Tm,Tn成等比数列?若存在,求出所有的m,n的值;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案