精英家教网 > 初中数学 > 题目详情
当x=-1时,代数式x2-x+k的值为0,则k的值是(  )
A.-2B.-1C.0D.2
相关习题

科目:初中数学 来源: 题型:

11、当x=-1时,代数式x2-x+k的值为0,则k的值是(  )

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

当x=-1时,代数式x2-x+k的值为0,则k的值是(  )
A.-2B.-1C.0D.2

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

当x=-1时,代数式x2-x+k的值为0,则k的值是


  1. A.
    -2
  2. B.
    -1
  3. C.
    0
  4. D.
    2

查看答案和解析>>

科目:初中数学 来源:海南省期中题 题型:单选题

当x=﹣1时,代数式x2﹣x+k的值为0,则k的值是
[     ]
A.﹣2
B.﹣1
C.0
D.2

查看答案和解析>>

科目:初中数学 来源: 题型:

当x
=-3
=-3
时,
x2-9
x-3
的值为零;代数式
x+2
3x-1
有意义,则x的取值范围是
x≥-2,且x≠
1
3
x≥-2,且x≠
1
3

查看答案和解析>>

科目:初中数学 来源: 题型:

为了探索代数式
x2+1
+
(8-x)2+25
的最小值,小明巧妙的运用了“数形结合”思想.具体方法是这样的:如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.已知AB=1,DE=5,BD=8,设BC=x.则AC=
x2+1
CE=
(8-x)2+25
则问题即转化成求AC+CE的最小值.
(1)我们知道当A、C、E在同一直线上时,AC+CE的值最小,于是可求得
x2+1
+
(8-x)2+25
的最小值等于
10
10
,此时x=
4
3
4
3

(2)请你根据上述的方法和结论,代数式
x2+4
+
(12-x)2+9
的最小值等于
13
13

查看答案和解析>>

科目:初中数学 来源: 题型:

为了探索代数式
x2+1
+
(8-x)2+25
的最小值,
小张巧妙的运用了数学思想.具体方法是这样的:如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连结AC、EC.已知AB=1,DE=5,BD=8,设BC=x.则AC=
x2+1
,CE=
(8-x)2+25
 则问题即转化成求AC+CE的最小值.
(1)我们知道当A、C、E在同一直线上时,AC+CE的值最小,于是可求得
x2+1
+
(8-x)2+25
的最小值等于
10
10
,此时x=
4
3
4
3

(2)题中“小张巧妙的运用了数学思想”是指哪种主要的数学思想?
(选填:函数思想,分类讨论思想、类比思想、数形结合思想)
(3)请你根据上述的方法和结论,试构图求出代数式
x2+4
+
(12-x)2+9
的最小值
13
13

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

为了探索代数式
x2+1
+
(8-x)2+25
的最小值,小明巧妙的运用了“数形结合”思想.具体方法是这样的:如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.已知AB=1,DE=5,BD=8,设BC=x.则AC=
x2+1
CE=
(8-x)2+25
,则问题即转化成求AC+CE的最小值.
(1)我们知道当A、C、E在同一直线上时,AC+CE的值最小,于是可求得
x2+1
+
(8-x)2+25
的最小值等于______,此时x=______;
(2)请你根据上述的方法和结论,试构图求出代数式
x2+4
+
(12-x)2+9
的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,直线l:y=数学公式x+b,经过点M(0,数学公式),一组抛物线的顶点B1(1,y1),B2(2,y2),B3(3,y3),…,Bn(n,yn)(n为正整数)依次是直线l上的点,这组抛物线与x轴正半轴的交点依次是:A1(x1,0),A2(x2,0),A3(x3,0),…An+1(xn+1,0),设x1=d(0<d<1).
(1)求b的值;
(2)求经过点A1、B1、A2的抛物线的解析式(用含d的代数式表示);
(3)定义:若抛物线的顶点与x轴的两个交点构成的三角形是直角三角形,则这种抛物线就称为:“美丽抛物线”.探究:当d(0<d<1)的大小变化时,这组抛物线中是否存在美丽抛物线?若存在,请你求出相应的d的值.

查看答案和解析>>

科目:初中数学 来源:广东省中考真题 题型:解答题

已知:如图,直线l:经过点,一组抛物线的顶点B1(1,y1),B2(2,y2),B3(3,y3),…,Bn(n,yn)(n为正整数)依次是直线l上的点,这组抛物线与x轴正半轴的交点依次是:A1(x1,0),A2(x2,0),A3(x3,0),…,An+1(xn+1,0)(n为正整数),设x1=d(0<d<1)。
(1)求b的值;
(2)求经过点A1、B1、A2的抛物线的解析式(用含d的代数式表示);
(3)定义:若抛物线的顶点与x轴的两个交点构成的三角形,则这种抛物线就称为“美丽抛物线”。
探究:当d(0<d<1)的大小变化时,这组抛物线中是否存在美丽抛物线?若存在,清你求出相应的d 的值。

查看答案和解析>>


同步练习册答案