精英家教网 > 初中数学 > 题目详情
已知点A(4,3)和点B是同一平面直角坐标系内两点,且它们关于直线x轴对称,则点B的坐标为(  )
A.(-4,3)B.(3,4)C.(3,-4)D.(4,-3)
相关习题

科目:初中数学 来源:2013年湖南省长沙市中考数学模拟试卷(四)(解析版) 题型:解答题

在平面直角坐标系xOy中,已知二次函数y=的图象经过点A(2,0)和点B(1,-),直线l经过抛物线的顶点且与y轴垂直,垂足为Q.

(1)求该二次函数的表达式;
(2)设抛物线上有一动点P从点B处出发沿抛物线向上运动,其纵坐标y1随时间t(t≥0)的变化规律为y1=-+2t.现以线段OP为直径作⊙C.
①当点P在起始位置点B处时,试判断直线l与⊙C的位置关系,并说明理由;在点P运动的过程中,直线l与⊙C是否始终保持这种位置关系?请说明你的理由.
②若在点P开始运动的同时,直线l也向上平行移动,且垂足Q的纵坐标y2随时间t的变化规律为y2=-1+3t,则当t在什么范围内变化时,直线l与⊙C相交?此时,若直线l被⊙C所截得的弦长为a,试求a2的最大值.

查看答案和解析>>

科目:初中数学 来源:2012年江苏省盐城市中考数学试卷(解析版) 题型:解答题

在平面直角坐标系xOy中,已知二次函数y=的图象经过点A(2,0)和点B(1,-),直线l经过抛物线的顶点且与y轴垂直,垂足为Q.

(1)求该二次函数的表达式;
(2)设抛物线上有一动点P从点B处出发沿抛物线向上运动,其纵坐标y1随时间t(t≥0)的变化规律为y1=-+2t.现以线段OP为直径作⊙C.
①当点P在起始位置点B处时,试判断直线l与⊙C的位置关系,并说明理由;在点P运动的过程中,直线l与⊙C是否始终保持这种位置关系?请说明你的理由.
②若在点P开始运动的同时,直线l也向上平行移动,且垂足Q的纵坐标y2随时间t的变化规律为y2=-1+3t,则当t在什么范围内变化时,直线l与⊙C相交?此时,若直线l被⊙C所截得的弦长为a,试求a2的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=-
23
x2+bx+c
与x轴交于不同的两点A(x1,0)和B(x2,0),与y轴交于点C,且x1,x2是方程x2-2x-3=0的两个根(x1<x2).
(1)求抛物线的解析式;
(2)过点A作AD∥CB交抛物线于点D,求四边形ACBD的面积;
(3)如果P是线段AC上的一个动点(不与点A、C重合),过点P作平行于x轴的直线l交BC于点Q,那么在x轴上是否存在点R,使得△PQR为等腰直角三角形?若存在,求出点R的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知双曲线y=
3x
和直线y=kx+2(k是常数)相交于点A(x1,y1)和点B(x2,y2),(x1<x2)且x12+x22=10
(1)求k值;
(2)在同一平面直角坐标系中画出两个函数图象,根据图象写出一次函数值大于反比例函数值时x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知双曲线数学公式和直线y=kx+2(k是常数)相交于点A(x1,y1)和点B(x2,y2),(x1<x2)且数学公式
(1)求k值;
(2)在同一平面直角坐标系中画出两个函数图象,根据图象写出一次函数值大于反比例函数值时x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线与x轴交于不同的两点,与y轴交于点C,且是方程的两个根().

1.求抛物线的解析式;

2.过点A作AD∥CB交抛物线于点D,求四边形ACBD的面积;

3.如果P是线段AC上的一个动点(不与点A、C重合),过点P作平行于x轴的直线l交BC于点Q,那么在x轴上是否存在点R,使得△PQR为等腰直角三角形?若存在,求出点R的坐标;若不存在,请说明理由。

 

查看答案和解析>>

科目:初中数学 来源:2012年北京顺义区中考模拟数学卷 题型:解答题

已知抛物线与x轴交于不同的两点,与y轴交于点C,且是方程的两个根().

1.求抛物线的解析式;

2.过点A作AD∥CB交抛物线于点D,求四边形ACBD的面积;

3.如果P是线段AC上的一个动点(不与点A、C重合),过点P作平行于x轴的直线l交BC于点Q,那么在x轴上是否存在点R,使得△PQR为等腰直角三角形?若存在,求出点R的坐标;若不存在,请说明理由。

 

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知双曲线y=
3
x
和直线y=kx+2(k是常数)相交于点A(x1,y1)和点B(x2,y2),(x1<x2)且x12+x22=10
(1)求k值;
(2)在同一平面直角坐标系中画出两个函数图象,根据图象写出一次函数值大于反比例函数值时x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=-
2
3
x2+bx+c
与x轴交于不同的两点A(x1,0)和B(x2,0),与y轴交于点C,且x1,x2是方程x2-2x-3=0的两个根(x1<x2).
(1)求抛物线的解析式;
(2)过点A作ADCB交抛物线于点D,求四边形ACBD的面积;
(3)如果P是线段AC上的一个动点(不与点A、C重合),过点P作平行于x轴的直线l交BC于点Q,那么在x轴上是否存在点R,使得△PQR为等腰直角三角形?若存在,求出点R的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图在平面直角坐标系中,已知直角梯形OABC的顶点分别是O(0,0),点A(9,0),B(6,4),C(0,4).点P从点C沿C-B-A运动,速度为每秒2个单位,点Q从A向O点运动,速度为每秒1个单位,当其中一个点到达终点时,另一个点也停止运动.两点同时出发,设运动的时间是t秒.
(1)点P和点Q谁先到达终点?到达终点时t的值是多少?
(2)当t取何值时,直线PQ∥AB?并写出此时点P的坐标.(写出解答过程)
(3)是否存在符合题意的t的值,使直角梯形OABC被直线PQ分成面积相等的两个部分?如精英家教网果存在,求出t的值;如果不存在,请说明理由.
(4)探究:当t取何值时,直线PQ⊥AB?(只要直接写出答案,不需写出计算过程).

查看答案和解析>>


同步练习册答案