精英家教网 > 高中数学 > 题目详情
n(n-1)(n-2)?…?4等于(  )
A.Pn4B.n!-4!C.Pnn-4D.Pnn-3
相关习题

科目:高中数学 来源: 题型:

n(n-1)(n-2)•…•4等于(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

n(n-1)(n-2)•…•4等于(  )
A.Pn4B.n!-4!C.Pnn-4D.Pnn-3

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

n(n-1)(n-2)•…•4等于


  1. A.
    Pn4
  2. B.
    n!-4!
  3. C.
    Pnn-4
  4. D.
    Pnn-3

查看答案和解析>>

科目:高中数学 来源: 题型:013

若集合等于(   

AM                BN              CR              D{24),(-11}

 

查看答案和解析>>

科目:高中数学 来源:数学教研室 题型:013

若集合等于(   

AM                BN              CR              D{24),(-11}

 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网A.选修4-1:几何证明选讲
锐角三角形ABC内接于⊙O,∠ABC=60?,∠BAC=40?,作OE⊥AB交劣弧
AB
于点E,连接EC,求∠OEC.
B.选修4-2:矩阵与变换
曲线C1=x2+2y2=1在矩阵M=[
12
01
]的作用下变换为曲线C2,求C2的方程.
C.选修4-4:坐标系与参数方程
P为曲线C1
x=1+cosθ
y=sinθ
(θ为参数)上一点,求它到直线C2
x=1+2t
y=2
(t为参数)距离的最小值.
D.选修4-5:不等式选讲
设n∈N*,求证:
C
1
n
+
C
2
N
+L+
C
N
N
n(2n-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知矩阵A=
a2
1b
有一个属于特征值1的特征向量
α
=
2
-1

①求矩阵A;
②已知矩阵B=
1-1
01
,点O(0,0),M(2,-1),N(0,2),求△OMN在矩阵AB的对应变换作用下所得到的△O'M'N'的面积.
(2)已知在直角坐标系xOy中,直线l的参数方程为
x=t-3
y=
3
 t
(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,曲线C的极坐标方程为ρ2-4ρco sθ+3=0.
①求直线l普通方程和曲线C的直角坐标方程;
②设点P是曲线C上的一个动点,求它到直线l的距离的取值范围.
(3)已知函数f(x)=|x-1|+|x+1|.
①求不等式f(x)≥3的解集;
②若关于x的不等式f(x)≥a2-a在R上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)如图,AB是⊙O的直径,AC是弦,∠BAC的平分线AD交⊙O于D,DE⊥AC交AC延长线于点E,OE交AD于点F.
(Ⅰ)求证:DE是⊙O的切线;
(Ⅱ)若
AC
AB
=
3
5
,求
AF
DF
的值.
(2)在直角坐标系中,以原点为极点,x轴的正半轴为极轴建坐标系,已知曲线
C:ρsin2θ=2acosθ(a>0),已知过点P(-2,-4)的直线L的参数方程为:
x=-2+
2
2
t
y=-4+
2
2
t
,直线L与曲线C分别交于M,N.
(Ⅰ)写出曲线C和直线L的普通方程;  
(Ⅱ)若|PM|,|MN|,|PN|成等比数列,求a的值.

查看答案和解析>>

科目:高中数学 来源:2013届广西玉林市高二下学期三月月考文科数学试卷(解析版) 题型:选择题

,则n等于(         ) 

A、5         B、4    C、2           D、1

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江苏省南通市高三(上)期末数学试卷(解析版) 题型:解答题

A.选修4-1:几何证明选讲
锐角三角形ABC内接于⊙O,∠ABC=60?,∠BAC=40?,作OE⊥AB交劣弧于点E,连接EC,求∠OEC.
B.选修4-2:矩阵与变换
曲线C1=x2+2y2=1在矩阵M=[]的作用下变换为曲线C2,求C2的方程.
C.选修4-4:坐标系与参数方程
P为曲线C1(θ为参数)上一点,求它到直线C2(t为参数)距离的最小值.
D.选修4-5:不等式选讲
设n∈N*,求证:++L+

查看答案和解析>>


同步练习册答案